
The following material is excerpted from:

The Microcontroller Idea Book

Circuits, Programs, & Applications

featuring the 8052-BASIC Microcontroller

by Jan Axelson

copyright 1994, 1997 by Jan Axelson

ISBN 0-9650819-0-7
Published by Lakeview Research
Distribution by International Thomson Publishing (ITP) in arrangement with
Peer-to-Peer Communications.

For more information, contact:

Lakeview Research
2209 Winnebago St.
Madison, WI 53704
USA

Phone: 608-241-5824
Fax: 608-241-5848
Email: jaxelson@lvr.com
World Wide Web: http://www.lvr.com

You may distribute this material if you agree to distribute it in full and unchanged and agree
to charge no fee for such distribution with the exception of reasonable media charges.

The author and publisher have used their best efforts in preparing this work and the
materials in it. The author built and tested the electronic circuits described, ran and tested
the computer programs presented, and reviewed all materials for completeness and accu-
racy. The author and publisher make no warranty with regard to the circuit schematics,
program listings, and other materials in this work. The author and publisher take no
responsibility for any damages resulting from any use of the material in this work.

3

Powering Up
This chapter presents a circuit that enables you to start using the 8052-BASIC chip. You can
write and run programs and experiment with the BASIC-52 programming language. Later,
you can add non-volatile memory for permanent program storage and interfaces to displays,
keypads, and whatever else your projects require.

About the Circuit

Figure 3-1 contains all of the components you need to get a BASIC-52 system up and
running, plus a few optional extras for future use. Table 3-1 is a parts list for the circuit.

The circuit has five major components: the 8052-BASIC chip (U2), an address latch (U4),
an address decoder (U6), static RAM (U7), and an RS-232 interface (U5). As I’ll explain
below, a few of the components aren’t essential at this point, but I’ve included them to allow
easy expansion later on.

The circuit configuration is a more-or-less standard design, similar to many other microcon-
troller circuits. When you understand this circuit, you’re well on your way to understanding
many others.

The following paragraphs explain the circuit operation, component by component. If you’re
impatient to get started, you can skim or skip over this section for now, and go straight to
the construction details.

Powering Up

The Microcontroller Idea Book 23

Chapter 3

24 The Microcontroller Idea Book

The Microcontroller

U2 is the 8052-BASIC chip. The circuit is designed so that you can use either the NMOS
version or the CMOS 80C52-BASIC.

EA, the External Access Enable input (pin 31 of U2), connects to +5V. This causes the 8052
to run the BASIC-52 interpreter in ROM on boot-up. If EA is low, the 8052 ignores its internal
ROM and instead accesses external program memory on boot-up. You can wire EA directly

Semiconductors

LED1 Light-emitting diode
U1 74HC14 quad inverting Schmitt trigger
U2 8052-BASIC or 80C52-BASIC microcontroller
U3 74HCT08 quad AND gate
U4 74HCT373 octal transparent latch
U5 MAX232, RS-232 driver/receiver
U6 74HCT138 3-to-8-line decoder
U7 6264 (8 kilobyte) or 62256 (32 kilobyte) static RAM, access time 250ns or

less

Resistors (1/4-watt, 5% tolerance)

R1-R9 10,000-ohm
R10 330-ohm

Capacitors (16WVDC, 20% tolerance)

C1,C8 10-microfarad, aluminum or tantalum electrolytic
C2,C3 30-picofarad ,ceramic disc
C4-C7 1.0-microfarad,aluminum or tantalum electrolytic
C9-C13 0.1-microfarad, ceramic disc

Miscellaneous

J1-J3 SIP header, 3-terminal, and shorting block
S1 Switch, normally-open momentary pushbutton
XTAL1 11.0592-Mhz crystal

RS232 connector, IC sockets, perforated board, wire, solder, and other circuit-construction
materials

Table 3-1. Parts list for Figure 3-1’s circuit.

Powering Up

The Microcontroller Idea Book 25

to +5V, or use a jumper as shown in the schematic, to allow you to bypass BASIC-52 and
boot to an assembly-language program in external memory, as described in Chapter 13.

The crystal. XTAL1 is an 11.0592-Mhz crystal that connects to pins 18 and 19 of U2. This
crystal frequency has two advantages. It gives accurate baud rates for serial communications,
due to the way that the 8052’s timer divides the system clock to generate the baud rates.
Plus, BASIC-52 assumes this frequency when it times the real-time clock, EPROM
programming pulses, and serial printer port.

However, you should be able to use any crystal value from 3.5 to 12 Megahertz. If you use
a different value, you can use BASIC-52’s XTAL operator to adjust the timing to match the
frequency of the crystal you are using. The serial communications are reliable if the baud
rate is accurate to within a few percent. The higher the crystal frequency, the faster your
programs will execute, so most designs use either 11.0592 Mhz or 12 Mhz, which is the
maximum clock frequency that the standard 8052 chip can use.

Capacitors C2 and C3 are 30 picofarads each, as specified in the 8052’s data sheet. Their
precise value isn’t critical. Smaller values decrease the oscillator’s start-up time, while larger
values increase stability.

Reset circuit. A logic high on pin 9 of U2 resets the chip. On power up, pin 1 of U1 rises
slowly from 0V to +5V as capacitor C1 charges through resistor R1. Inverter U1 has a
Schmitt-trigger input, which has upper and lower switching thresholds that help to ensure
a clean reset pulse at pin 9 of U2. On a logic gate that doesn’t have a Schmitt-trigger input,
the output may oscillate if a slowly changing input remains near the switching threshold. In
contrast, at U1, when pin 1 reaches the upper switching threshold (about 2.8V), pin 2
switches from high to low, but won’t go high again until pin 1 drops to the lower threshold
of about 1.8V.

Pressing and releasing S1 resets the 8052-BASIC chip by discharging C1 and then allowing
it to recharge, which brings RESET high, then low again

External Memory

The remaining connections to U2 have to do with reading and writing to external memory.

Read and write signals. To enable reading combined program and data memory, AND gate
U3A’s output is RDANY. This signal is low when either READ or PSEN is low. Figure 3-1’s
circuit doesn’t use RDANY, but I’ve included U3A for future use. Writing to data memory
is controlled by WRITE. Code memory can’t be written to.

AD0-AD7 connect to U4, a 74HCT373 octal transparent latch that stores the lower address
byte during memory accesses. The chip contains a set of D-type latches that store logic states.

Chapter 3

26 The Microcontroller Idea Book

A latch-enable input (LE) controls whether the outputs are latched (stored), or not latched
(immediately follow the inputs). Figure 3-2 shows the truth table for the chip. When pin 11
is high, 1Q-8Q follow 1D-8D. When pin 11 goes low, outputs 1Q-8Q will not change until pin
11 goes high again.

During each external memory access, 1Q-8Q store the low address byte, so the eight lines
that connect to these outputs carry the label LOW ADDRESS BUS. AND gate U3B latches, or
stores, U4’s outputs only when both ALE and ALEDIS are high. During normal memory
accesses, ALEDIS remains high, and ALE controls U4. ALEDIS disables the latches when
BASIC-52 executes its programming commands. Figure 3-1’s circuit doesn’t use the
programming commands, so ALE could control U4 directly, but again, I’ve included U3B
for future use.

Because AD0-AD7 hold the data to be read or written during a memory access, the signals as
a group carry the label DATA BUS. Each line of AD0-AD7 has a 10K pullup resistor. These are

Figure 3-2. Truth tables for the 74HCT138 decoder and 74HCT373 octal
transparent latch.

Powering Up

The Microcontroller Idea Book 27

required for the programming functions, and are included for future use. You can use eight
individual resistors, or a resistor network that contains eight resistors in a SIP or DIP package.
In a bussed resistor network, one pin connects to one side of all of the resistors, so you have
fewer connections to wire.

The remaining bus is the HIGH ADDRESS BUS (A8-A15), which consists of the upper eight
address lines, and is not multiplexed.

Address decoding. U6 is a 74HCT138 3-to-8-line decoder. It functions as an address
decoder for the 64K external memory space. Address decoding allows multiple chips to
connect to the address and data buses, with each chip enabled only when it is selected.

Figure 3-2 shows a truth table for the decoder. The 8052-BASIC chip uses the three highest
address lines (A13-A15) to generate a chip-select signal for each of eight 8K blocks in
memory. This is by no means the only way to decode memory, but it’s a common and flexible
one. In the schematic, each output is labeled with the base, or bottom, address in the block
it controls.

For example, when U2 reads or writes to an address between 0 and 1FFFh in external
memory, A13, A14, and A15 are low, so pin 15 of U6 is low. For all other addresses, pin 15 is
high. If we connect pin 15 to the chip-select input of an 8K RAM, the RAM will be enabled
only when addresses from 0 to 1FFFh are accessed. (Remember that 8K, or 8 kilobytes, is
2000h, or 0 through 1FFFh, in hexadecimal.)

If you use a 32K RAM, you don’t need U6 to decode its addressing. For all of the 32K
RAM’s addresses (0 to 7FFFh), A15 is low, and for all other addresses (7FFFh to FFFFh),
A15 is high. This means that you can use A15 directly as a chip select, without additional
decoding. U6 will come in handy later, however, even if you use a 32K RAM.

RAM choices. The minimal circuit includes just one memory chip, U7, which can be an 8K
or 32K static RAM, or SRAM. BASIC-52 requires at least 1K of RAM, but I’ve used the
larger capacities, since the extra room is useful and doesn’t cost much more. The pinouts of
the two chips are similar, with jumpers J2 and J3 routing the signals that vary.

The 8K chip has 13 address inputs (A0-A12), while the 32K chip has 15 (A0-A14). Eight data
I/O pins (I/O1-I/O8) connect to the data bus and hold the bytes to be read or written.

The RAM has three control inputs whose functions match those of the 8052’s control
outputs. Pin 20 (CS1, or Chip Select 1) enables U7 whenever the 8052 reads or writes to the
chip, with the address decoding determining the address range of the chip.

Chapter 3

28 The Microcontroller Idea Book

Jumper J3 chooses the chip select for an 8K or 32K device. Some 8K RAMs have a second
chip select (CS2), which is tied high (always selected) by J2. If you limit yourself to either
8K or 32K RAMs, you can eliminate J2 and J3 and wire the appropriate connections directly.

Pin 27 (WE, or Write Enable) is driven by WRITE, and is strobed low during each write to
external data memory. Pin 22 (OE, or Output Enable) is driven by READ, and strobes low
when either external data or code memory is read.

With an 8K RAM, each write cycle follows this sequence: The 8052 brings ALE high and
places the address to be written to on AD0-AD7 and A8-A15. For addresses from 0 to 1FFFH,
A13-A15 are low, so U7 is selected at its pin 20. After a short delay, the 8052 brings ALE low,
which causes U7 to store the lower address byte. After another short delay, the 8052 replaces
the address on AD0-AD7 with the data to be written. A low pulse at pin 27 (WE) causes the
RAM to write the data into the address specified by A0-A12.

Read cycles are similar, except that a pulse at pin 22 (OE) causes the requested data to appear
on AD0-AD7, where the 8052 reads it.

With a 32K RAM, the process is the same, except that A15 is the chip select and there are
two more address lines on the chip.

Static RAM chips are rated by their read-access time, which is the maximum time the chip
will require to place a byte on the data bus after a read is requested. With a crystal frequency
of 12 Mhz or lower, an access time of 250 nanoseconds or less is fine for accessing external
data or code memory. Access times and other timing characteristics are described in the
timing diagrams in the data sheets for the 8052 and RAM.

When you use the 8052-BASIC, you don’t have to worry about any of these specifics about
the read and write cycles. If the circuit is wired correctly, and if all of the components are
functioning as they should, reading and writing occur automatically in the course of
executing BASIC-52 statements and commands. A single program line in BASIC-52 can
cause dozens or more read and write operations to occur.

Logic families. Logic chips U3, U4, and U6 are HCT-family components, which have
TTL-compatible inputs and CMOS-compatible outputs. This means that they can interface
directly to either TTL or CMOS logic.

If HCT-family parts aren’t available, there are alternatives. You may use an LSTTL chip
(74LS08, 74LS138, 74LS373) for U3, U4, or U6. Or, if you use a CMOS 80C52-BASIC
for U2, you may use an HCMOS 74HC08 or 74HC138 for U3 or U6. If U3 is a 74HC08 or
74HCT08, you may use a 75HC373 for U4. For U1, you may use a 74HC14 or 74LS14.

Powering Up

The Microcontroller Idea Book 29

Table 3-2 summarizes the input and output voltage specifications for different logic-device
families. The main point to remember is that a TTL logic-high output voltage (and most
NMOS high outputs) may be as low as 2.4V, which does not meet the minimum input-voltage
requirement for HCMOS or 4000-series CMOS devices. To interface a TTL output to
CMOS, use an HCTMOS device, which accepts TTL-logic inputs. Or, you may add a pull-up
resistor to a TTL output to pull it near +5V.

Serial Interface

The final chip in the schematic is U5, a MAX232 driver/receiver, which is the popular
single-chip solution for RS-232 interfaces. One side connects to the 8052’s serial input and
output on pins 10 and 11 of U1, and the other side sends and receives signals at standard
RS-232 levels to a personal computer. Larger capacitor values for C4-C7 are fine, and the
MAX232A version can use values as small as 0.1 microfarad. If you splurge on a MAX233,
which has internal capacitors, you don’t need C4-C7 at all.

Power Supply

A final essential component is the power supply. For the basic system, all you need is a
regulated +5-volt supply. These are widely available from mail-order suppliers. An output
capability of at least 500 milliamperes is recommended.

Capacitors C8-C13 provide power-supply decoupling. Digital devices draw current as they
switch. Capacitors C9-C13 store energy that the components can draw quickly, without
causing spikes in the supply or ground lines. C8 stores energy for quick recharging of
C9-C13. The exact values aren’t critical, but C9-C13 should be a type with good high-fre-
quency response, such as ceramic, mica, or polystyrene.

LED1 and current-limiting resistor R10 are an optional power-on indicator.

Logic Type Output Input

0 (maximum) 1 (minimum) 0 (maximum) 1 (minimum)

TTL, including LSTTL
most NMOS

0.4V 2.4V 0.8V 2.0V

HCTMOS 0.1V 4.9V 0.8V 2.0V

HCMOS 0.1V 4.9V 1.0V 3.5V

4000-series CMOS 0.1V 4.9V 1.5V 3.5V

Table 3-2. Voltage specifications for different types of logic, powered at 5V.

Chapter 3

30 The Microcontroller Idea Book

Circuit Construction

This circuit is intended for use as a flexible system for testing and experimenting, rather
than a fixed, unchanging design for a single application. For this reason, I recommend
building it with wire-wrapping or another construction method that allows easy changes and
additions. Figure 3-3 shows an 8052-BASIC circuit wire-wrapped onto perfboard.

Reading the Schematic

In the schematic, I used a couple of different techniques to represent connections between
pins and components. In the reset circuit, connections are drawn as direct point-to-point
lines. For the address and data lines, I used buses for a neater, more compact schematic.
When you wire these connections, use the signal labels as a guide. For example, the label
D0 tells you to interconnect these points: pin 39 of U2, pin 3 of U4, pin 11 of U7, and one
end of R2. Other connections are indicated by labels. For example, the WRITE label tells you
to connect pin 16 of U2 and pin 27 of U7.

Another point to be aware of is the conventions used in the schematics and text of this book
for indicating an active-low signal, or a signal that is valid, or enabled, when low. In this
book, the schematics use a leading hyphen (-WRITE) , while the text uses an overscore
(WRITE). Their meanings are the same.

Figure 3-3. This is the circuit board on which I wire-wrapped and tested
many of the circuits in this book.

Powering Up

The Microcontroller Idea Book 31

Figure 3-4. How to determine the correct orientation for ICs, diodes, LEDs,
and electrolytic capacitors.

Chapter 3

32 The Microcontroller Idea Book

Construction Tips

These are some things to be aware of as you build the circuit:

• Choose a circuit board that has room for additions, at least 4 by 6 inches.

• A board with interleaved buses, such as Vector’s 3677 series, allows easy,
low-impedance connections to +5V and ground. Designate one bus as ground, and the
other as +5V. For power and ground connections, wrap one end of the wire to the
appropriate pin on the chip, and trim and solder the other end directly to the bus.

• To connect the power and ground buses to the +5V supply, use thick (AWG #22 or
lower) wires, not #30 wire-wrap wires. You can solder the other ends of the wires to
banana plugs or screw terminals, or clip your power-supply leads directly to the wires.

• The schematic doesn’t show an ON/OFF switch for the circuit, but you can add a SPST
toggle or slide switch in series with the connection to the +5V supply if you wish.

• Place C8 near where the +5V supply connects to the board. Mount decoupling
capacitors C9-C13 so that each chip’s +5V and GND pins are near a capacitor. In other
words, space the capacitors evenly around the board; don’t group them all in one area.
Keep the wires or traces between the capacitor’s leads and the IC’s +5V and ground
pins as short as possible.

• To minimize noise in the oscillator circuits, place XTAL1, C2, and C3 close to pins 18
and 19 of U2 and connect them with short wires. Wire the ground terminals of C2 and
C3 directly to pin 20 of U2.

• When you wire the following components, correct orientation is required: C1, C4-C8,
D1, LED1, and U1-U7. Figure 3-4 shows common polarity indicators for these
components. Notice that C7’s positive terminal connects to ground, and C6’s negative
terminal connects to +5V, since these capacitors connect to the MAX232’s -10V and
+10V outputs.

• As you wire the circuits, remember that everything on the wire-wrap or solder side of
the board is a mirror image of the way it looks on the component side of the board. If
pin 1 is in the upper left corner on the component side, it’s in the upper right corner on
the wire-wrap side (assuming that you flip the board over from side to side, not top to
bottom).

• Labels on the wire-wrap side are helpful. You can place a dot of indelible ink near pin
1, or adhesive labels between the pins, or use prelabeled and punched plastic labels that
slide onto the wire-wrap pins.

Powering Up

The Microcontroller Idea Book 33

• Don’t plug the ICs into their sockets until you’ve completed wiring all of the circuits.

Unused Gates

Two gates on U3 and five gates on U1 are unused. To prevent the unused CMOS inputs from
floating and possibly drawing excessive currents, wire pins 9, 10, 12, and 13 of U3 to ground
or +5V. Do the same for pins 3, 5, 9, 11, and 13 of U1. Don’t forget to remove these
connections if you later use the pins. If you are using LSTTL chips (74LS08, 74LS14), leave
the unused inputs open.

Figure 3-5. Pin connections for 25-pin and 9-pin RS-232 connectors.

Chapter 3

34 The Microcontroller Idea Book

Serial Connectors

Connections to RS-232 OUT and RS-232 IN depend on the type of serial connector you have
on your personal computer or its serial cable.

Connectors vary, but two common ones are a male 25-pin or 9-pin D-connector. (The outer
shell of a D-connector is roughly in the shape of a D.) For the 8052-BASIC system, you’ll
need a mating female 25-pin or 9-pin D-connector. The connection has just three wires. A
solder-cup-type connector allows easy soldering of the wires.

Figure 3-5 shows the wiring for 9- and 25-pin connectors. A few computers require additional
handshaking signals. BASIC-52 doesn’t support these, but you can simulate them by
connecting together pins 5, 6, 8, and 20 at the personal-computer end of the link. (Pin
numbers are for a 25-pin connector.)

Powering Up

The first time you power up an untested circuit, it pays to be cautious. I recommend the
following steps:

First Steps

Visually inspect the circuit. You don’t have to spend a lot of time on this, but sometimes a
missing or miswired wire or component or another problem will become obvious.

Install U1-U7 on the board, making sure that pin 1 on each is oriented correctly. Set J1 to
BASIC, and set J2 and J3 to match the size of your RAM at U7.

With an ohmmeter, measure the resistance from +5V to ground, to be sure these aren’t
shorted together by mistake. The exact value you measure isn’t critical, but if you read less
than 100 ohms, something is miswired and you need to find and fix the problem before you
continue.

If you suspect a problem, check the wiring of the power and ground connections, comparing
the connections to those on the schematic. Be sure all components are oriented correctly.
When all checks out, you’re ready to boot up BASIC-52.

Booting BASIC-52

For the initial check, begin with everything powered down. I’ll use the term host computer,
or host system, to refer to the personal computer, and target computer, or target system, to
refer to the 8052-BASIC circuits. Included are some specific tips for users of Datastorm’s

Powering Up

The Microcontroller Idea Book 35

Procomm Plus for DOS and Microsoft Windows 3.1’s Terminal Accessory, but other
communications software should have similar features and abilities.

Turn on the host computer and run your communications software. Configure the software
for 8 data bits, no parity, and 1 stop bit. The baud rate you select isn’t critical, since BASIC-52
automatically adjusts to what you are using. To start, use a rate of 9600 or less. Don’t enable
any handshaking or flow-control options such as XON/XOFF or RTS/CTS.

Select the appropriate serial, or COM, port, if necessary. If you’re using an MS-DOS
(IBM-compatible) computer, you must find a COM port and interrupt-request (IRQ) level
that aren’t being used by your modem, mouse, or another device. Because COM1 and COM3
often share an IRQ level, as do COM2 and COM4, you generally can’t use COM1 and
COM3 at the same time, or COM2 and COM4. If you have an external modem, you can
unplug it and use its serial port.

In Procomm Plus, use the line/port setup menu (ALT+P) to configure. In the Windows
Terminal, use the Settings menu. Cable together the serial ports of the host and target
systems.

Figure 3-6. BASIC-52’s sign-on message and a simple program, using the
Windows Terminal accessory for communications.

Chapter 3

36 The Microcontroller Idea Book

You’re now ready to power up the target system. Turn on its power supply, and press the
SPACE bar at the host’s keyboard. You should see this BASIC-52 sign-on message and
prompt:

MCS-51(tm) BASIC V1.1
READY

Figure 3-6 shows the sign-on message and a simple program, using Windows’ Terminal
accessory for communications.

Troubleshooting

If you don’t see the prompt, it’s time to troubleshoot. Getting the system to boot up the first
time can be the most challenging part of a project, especially when serial communications
are involved. Here are some things that may help you isolate the cause of the problem:

• Try again by pressing and releasing S1 and pressing the space bar. If you are using a
32K RAM for U7, BASIC-52 requires about 1 second to perform its memory check
after a reset, before it will respond to the space bar. With an 8K RAM, the delay is a
few tenths of a second (proportionately longer with slower crystals).

• Double-check the easy things. Are the communications parameters correct? Did you
select the correct serial port? Are all ICs inserted?

• Verify that pin 9 of U2 goes high, then low, when you press and release S1.

• Check the power and ground pins of all ICs for proper voltages.

• Connect a logic probe to pin 10 of U2. When you press the space bar, you should see
the logic level toggle as U2 receives the ASCII code for a space (20h). If not, you
probably have a problem in the setup of your communications software or in the serial
cabling.

• Verify that pin 30 of U2 is toggling (at 1/6 the crystal frequency, if you have an
oscilloscope to measure). This indicates that the oscillator circuit is functioning.

• Verify that pins 21-28 and 32-39 of U2 toggle as BASIC-52 performs its memory
check immediately after powering up or rebooting.

• If all else fails, recheck your wiring for missing or misrouted wires. Sometimes there’s
no alternative but to go through the schematic connection by connection, checking each
with an ohmmeter.

Powering Up

The Microcontroller Idea Book 37

Basic tests

When your system boots, you’re ready for some basic tests. The BASIC-52 programming
manual is a useful reference at this point.

In some ways, BASIC-52 is similar to BASIC compilers like Microsoft’s QuickBASIC.
Many of the keywords and syntax rules are similar. But BASIC-52 is closer to older
interpreted BASICs like GW-BASIC or BASICA. You can type a statement or command and
execute it immediately when you press ENTER, or you can type a series of statements and
run them later as a program. When a line begins with a line number, BASIC-52 treats it as
a program line rather than as a command to execute immediately.

Here are some quick tests and experiments you can do:

Memory Check

Type

PRINT MTOP

to learn the amount of external data memory that BASIC-52 detected on boot-up. With an
8K RAM, MTOP should be 8191, and with 32K, it should be 32,767. If you prefer
hexadecimal notation, type

PH0. MTOP

(In PH0. , be sure to include the period and use a zero, not the letter “O”.)

Crystal Frequency

The special operator XTAL represents the value of the timing crystal that clocks the
8052-BASIC. The default value is 11059200, or 11.0592 Mhz. You can verify this by typing

PRINT XTAL

Most BASIC-52 statements don’t use the XTAL operator, so it doesn’t matter if the value
isn’t accurate. Exceptions are the real-time clock, programming commands, PWM output,
and LPT output. For these, XTAL should match your crystal’s frequency. To set XTAL for a
12Mhz crystal, type

XTAL=12000000

To verify, type

Chapter 3

38 The Microcontroller Idea Book

PRINT XTAL

 Line Editing

After typing a few commands, you may discover some of BASIC-52’s line-editing abilities.
While typing a line, you can correct mistakes by deleting back to the mistake and retyping.
In Procomm Plus, if you select VT100 terminal emulation (under Setup menu, Terminal
Options), you can use either the DELETE or BACKSPACE key to delete. With the Windows
terminal, you must use the DELETE key (not BACKSPACE). Many communications programs
allow you remap the keyboard, so you can select whatever delete key you wish.

Once you press ENTER, you can’t edit a line you’ve typed, unless you retype it from the
beginning.

BASIC-52 treats upper and lower-case characters the same. In most cases, spaces are
ignored, so you can include them or not as you wish.

Running a Program

Here is a very simple program to try:

10 FOR I=1 to 10
20 PRINT I
30 NEXT I
20 END

Enter each of the lines, including the line numbers. BASIC-52 automatically stores the
program in RAM. To run the program, type RUN. You should see this:

1
2
3
4
5
6
7
8
9
10

To view the program lines, type

LIST

Powering Up

The Microcontroller Idea Book 39

To erase the current program, type

NEW

To verify that the program no longer exists, type

LIST

You can change individual program lines by typing the line number, followed by a new
statement:

10 FOR I=1 to 20

To erase a line, type the line number and press ENTER:

20

Getting Out of Trouble

Occasionally, a programming error may cause a program to go into an endless loop or crash
the system. If it’s an endless loop, you can exit it and return to the READY prompt by pressing
CONTROL+C. If that doesn’t work, your only choice is to press S1 to reset the 8052-BASIC
system. Resetting will erase the program in RAM, so you’ll have to re-enter it.

Simple Programs to Try

The following sections offer some short programs to try, to help you explore your system
and become familiar with BASIC-52. Don’t worry if you don’t understand every line of the
programs. Later chapters get into programming in more detail.

Reading Port 1

You can use BASIC-52 to read and write to Port 1 (pins 1-8) on the 8052-BASIC.

The command

PH0.PORT1

will display the hex value of the entire port. Listing 3-1 is a program that displays the value
of each of the bits in the port.

Enter each line carefully. Be sure to include all of the punctuation shown. When you run the
program, you should see a display like this:

Chapter 3

40 The Microcontroller Idea Book

PORT 1 Bit Values:
Bit 0 = 1
Bit 1 = 1
Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bit 5 = 1
Bit 6 = 1
Bit 7 = 1

If a port pin is open, or unconnected, its internal pull-up resistor will cause it to read as 1.
If you connect a jumper wire from a port pin to ground, or bring the pin low by driving it
with a logic low output, it should read 0. Line 10 in Listing 3-1 brings all of Port 1’s bits
high, which enables them to be used as inputs.

Writing to Port 1

You can control the bits of Port 1 by writing to them. Listing 3-2 allows you to set or clear
individual bits. Here’s an example of what happens when you run the program:

Enter a bit to set or clear (0-2, 4-7) :7
Enter 1 to set, 0 to clear :0
Enter a bit to set or clear (0-2, 4-7) :3
Do not change bit 3!

The program doesn’t allow you to change bit 3 (P1.3), because the 8052-BASIC circuit
requires this bit to be high when accessing external memory (assuming that you’ve included
U3B in your circuit). If you do clear bit 3 accidentally, you’ll crash the system and will have
to reboot.

10 PORT1 = 0FFH
20 PRINT “PORT 1 Bit Values:”
30 PRINT “Bit 0 = ”,(PORT1.AND.1)
40 PRINT “Bit 1 = ”,(PORT1.AND.2)/2
50 PRINT “Bit 2 = ”,(PORT1.AND.4)/4
60 PRINT “Bit 3 = ”,(PORT1.AND.8)/8
70 PRINT “Bit 4 = ”,(PORT1.AND.10H)/10H
80 PRINT “Bit 5 = ”,(PORT1.AND.20H)/20H
90 PRINT “Bit 6 = ”,(PORT1.AND.40H)/40H
100 PRINT “Bit 7 = ”,(PORT1.AND.80H)/80H
110 END

Listing 3-1. Displays the value of each bit in Port 1.

Powering Up

The Microcontroller Idea Book 41

Run the program and follow the on-screen instructions to set or clear a bit. To monitor a port
bit as you set and clear it, you can use a logic probe, voltmeter, or oscilloscope. For example,
to monitor bit 0, place a logic probe on pin 1 of U1, or connect the + lead of a voltmeter to
pin 1 and the - lead to ground.

Accessing Memory

Listing 3-3 allows you to read and write to external RAM. Here is an example of what
happens when you run this program:

Enter 0 (read), 1 (write), or 2 (quit): 1
Free memory ranges from 397H to 1FFFH
Enter an address to write to : 1000H
Enter data to be written : 55H
55H has been written to address 1000H
Enter 0 (read), 1 (write), or 2 (quit): 0
External RAM ranges from 0 to 1FFFH
Enter an address to read : 1000H
55H is stored in address 1000H

If you write to an address outside the range specified as free memory, you will overwrite
the RAM currently in use to store your program and run BASIC-52. If you do this
accidentally, your system may crash and you’ll have to reset the system and re-enter the
program.

If you prefer decimal numbers to hex notation, change each PH0 in the program to PRINT.
(PH0. includes a period; PRINT does not.)

Real-time Clock

Listing 3-4 demonstrates BASIC-52’s real-time clock by displaying an on-screen 60-second
timer.

10 INPUT “Enter a bit to set or clear (0-2, 4-7) :”,X
20 IF X=3 THEN PRINT “Do not change bit 3!” : GOTO 10
30 INPUT “Enter 1 to set, 0 to clear :”,Y
40 IF Y=1 THEN PORT1=PORT1.OR.2**X
50 IF Y=0 THEN PORT1=PORT1.AND.0FFH-2**X
60 END

Listing 3-2. Allows you to set or clear individual bits of Port 1.

Chapter 3

42 The Microcontroller Idea Book

For the timer to be accurate, you must set XTAL to match the timing crystal your system
uses.

Further Experiments

Feel free to continue experimenting with BASIC-52 programs, using the programming
reference as a guide. You can do quite a bit with just these circuits.

10 DO
20 INPUT “Enter 0 (read), 1 (write), or 2 (quit): ”,RW
30 IF RW=0 THEN GOSUB 70
40 IF RW=1 THEN GOSUB 120
50 WHILE RW<>2
60 END
70 PH0."External RAM ranges from 0 to “,MTOP
80 INPUT “Enter an address to read : ”,A
90 B=XBY(A)
100 PH0.B," is stored in address “,A
110 RETURN
120 PH0."Free memory ranges from “,LEN+512,” to “,MTOP
130 INPUT “Enter an address to write to :”,A
140 INPUT “Enter data to be written :”,B
150 XBY(A)=B
160 PH0.B," has been written to address “,A
170 RETURN

Listing 3-3. Allows user to read and write to external memory.

10 CLOCK 1:TIME=0:SEC=0
20 DO
30 ONTIME 1,60
40 WHILE SEC<60
50 END
60 TIME=TIME-1
70 SEC=SEC+1
80 PRINT SEC
90 RETI

Listing 3-4. Real-time clock.

Powering Up

The Microcontroller Idea Book 43

Exiting Programs

Some programs, such as Listing 3-3’s, continue to run until the user requests to end it. In
BASIC-52, there are several ways to detect that the user wants to stop a program.

Set a User Variable

In Listing 3-3, the program displays a menu of choices on the host computer’s screen. The
program continues to run until the user selects QUIT by entering 2, which sets the variable
RW to 2 and causes the DO...WHILE loop and the program to end.

Use GET

Sometimes, selecting a menu option isn’t convenient or appropriate. Listing 3-5 reads and
displays the value of PORT1 once per second until the user presses any key at the host
computer. The program uses BASIC-52’s GET operator to detect a keypress. GET stores
the ASCII code of a keypress at the host computer. Setting a varialble equal to GET (line
50) causes GET to reset to 0. You can detect a keypress by reading GET periodically. If GET

10 CLOCK1:TIME=0:SEC=0
20 PRINT “Press any key to quit”
30 DO
40 ONTIME 1,100
50 G=GET
60 UNTIL G<>0
70 END
100 TIME=TIME-1
110 PH0. PORT1
120 RETI

Listing 3-5. This program uses BASIC-52’s GET instruction to detect when
the user has pressed a key.

10 CLOCK 1:TIME=0:SEC=0
20 DO
30 ONTIME 1,100
40 WHILE 1=1
50 END
100 TIME=TIME-1
110 PH0. PORT1
120 RETI

Listing 3-6. This program will end only when the user presses CONTROL+C.

Chapter 3

44 The Microcontroller Idea Book

doesn’t equal zero, it means that a key was pressed. In Listing 3-5, when GET no longer
equals 0, the program ends.

Wait for CONTROL+C

You can always end a program by pressing CONTROL+C at the host’s keyboard. The only
exceptions are runaway programs that have crashed the system and force you to reboot.
Listing 3-6 is an expanded version of Listing 3-5. It continues to read and display PORT1
in an endless loop (DO...WHILE 1=1), until you press CONTROL+C.

Detect a Switch Press

A final method will end a program without any input from the host’s keyboard. You can use
this in stand-alone projects that don’t connect to a host computer at all. Listing 3-7 ends
when the 8052-BASIC’s pin 13 (INT1) goes low, which causes an interrupt routine to execute.
Bring the pin low by jumpering it briefly to GND, or connect a pushbutton switch as described
in Chapter 7.

10 CLOCK 1:TIME=0:SEC=0
20 A=0
30 PRINT “Bring INT1 (pin 13) low to end program.”
40 DO
50 ONTIME 1,100
60 ONEX1 200
70 WHILE A=0
80 END
100 TIME=TIME-1
110 PHO. PORT1
120 RETI
200 A=1
210 RETI

Listing 3-7. This program ends when INT1 (pin 13) is brought low and causes
an interrupt routine to execute.

Powering Up

The Microcontroller Idea Book 45

Chapter 3

46 The Microcontroller Idea Book

