/* ********************************************************************** * File GMBIOTE.C - Rel. 1.1 with uC/51 V. 1.10.09 * * GRIFO(R) via Dell'Artigiano 8/6 40016 S. Giorgio di Piano (BO) * * Tel. +39 051 892052 Fax. +39 051 893661 * * http://www.grifo.com http://www.grifo.it * * sales@grifo.it tech@grifo.it grifo@grifo.it * * by Angelini Gianluca date 11.07.03 * ********************************************************************** 11/07/03: GMBIOTE.C - Rel. 1.1 - By Angelini Gianluca This demo allows to use immediatly TTL I/O digital lines available on CN4. According to Mini Module used, the list of available lines is printed. When the required line is selected it can be managed as input (its status is shown continuously on console) or as output (setting it high or low). Should the line selected be associated to Real Time Clock, this peripheral manages it. Note To avoid problems do not use complex operations on a single source line, especially inside procedures by using their parameters or their local variables. */ /**************************************************************************** Header, constant, data structure, etc. ****************************************************************************/ #include "canarye.h" #include #include #define FALSE 0x00 // Boolean value #define TRUE 0xFF #define LF 0x0A // ASCII codes #define CRET 0x0D #define RTCSLA 0xA0 // RTC PCF 8583 slave address // Global variables for I2C BUS management near unsigned char resi2c; // I2C BUS error variable bit unsigned char SDACAN @ 0xA1; // SDA pin on CAN GMx=P2.1 bit unsigned char SCLCAN @ 0xA0; // SCL pin on CAN GMx=P2.0 bit unsigned char SDA5115 @ 0xA0; // SDA pin on GMM 5115=P2.0 bit unsigned char SCL5115 @ 0xA1; // SCL pin on GMM 5115=P2.1 // General purpose global variables used by main and procedures near unsigned char minmod,choice,dr,dw,hlp; near unsigned int val; inear unsigned char input[9]; // Console input buffer /**************************************************************************** General purpose functions and card hw sections management functions ****************************************************************************/ unsigned char divappr(unsigned long divid,unsigned long divis) /* Procedure that calculates the 8 bit integer quotient, correctly approximated, between the dividend and the divisor passed as parameters, by using the successive subtractions tecnique. This function is used to reserve the 2K of code required by the same librari functions. */ { unsigned char d; d=0; // Set quotient to zero while (divid>=divis) { divid=divid-divis; d++; } //endwhile divis=divis>>1; // Halves divisor to check the remainder if (divid>=divis) d++; //endif return d; } void init_cpu(void) /* Perform some specific initialization of CPU SFRs */ { EA=0; // Ensures interrupt disabled CKCON=0x00; // Set X1 clock mode = standard mode AUXR=0x0C; // Selects ERAM on external data area EECON=0x00; // Disables internal EEPROM } void iniser(unsigned long baud) /* Initializes the serial line with: Bit x chr = 8 Stop bit = 1 Parity = None Baud rate = baud using timer 1 as baud rate generator. */ { SCON=0x052; // Mode 1, enables receiver TMOD&=0x00F; // Timer 1 in auto-reload mode TMOD|=0x020; TR1=0; // Stops TIMER 1 TH1=(unsigned char)(256-divappr((2*14745600),(384*baud))); // 14.7456 MHz PCON=PCON|0x080; // Sets SMOD=1 for high baud rates TR1=1; // Starts TIMER 1 TI=1; // Sets end of transmission bit for optimized console (SIOTYPE=k) } void clrscr(void) /* Performs the clear screen function for a generic console */ { unsigned char r; putc(CRET); for (r = 0 ; r < 25 ; r++) { putc(LF); // Transmit 25 Line Feeds } //endfor } void delay(unsigned int del) /* Executes a software delay of del milliseconds, calibrated on a 14.7456 MHz CPU Clock */ { unsigned int r,dt1ms; dt1ms=100; // Experimental value for 1 msec. delay do { for (r=0 ; r0); } unsigned char bintobcd(unsigned char d) /* Procedure that converts the binary coded byte d (0-99) into relative bcd code */ { d=((d/10)<<4)|(d%10); return d; } unsigned char bcdtobin(unsigned char d) /* Procedure that converts the bcd coded byte d into relative binary code (0-99) */ { d=((d>>4)*10)+(d&0x0F); return d; } void setP1234inp(void) /* Sets all the lines of all the ports (P1,P2,P3,P4) del modulo CAN GM1 in input. */ { ADCF=0x00; // Sets P1.x as I/O port P1=0xFF; // Sets Port 1 as INPUT dr=P1; P2=0xFF; // Sets Port 2 as INPUT dr=P2; P3=0xFF; // Sets Port 3 as INPUT dr=P3; P4=0xFF; // Sets Port 4 as INPUT dr=P4; } void demoiopin(void) /* Asks for test direction of the bit specified in choice and manages its setting or acquisition, according with user selection through console */ { do { printf("\r\nTest in Input,Output,End?"); do hlp=toupper(getc()); while ((hlp!='I') && (hlp!='O') && (hlp!='E')); putc(hlp); switch (hlp) { case 'I': puts("\r\nPin Acquisition in execution. Press a key to exit"); setP1234inp(); // Sets Port 1,2,3,4 as INPUT do { switch (choice) // Gets status from selected pin { case '2': dr=P2_2; break; case '3': dr=P4_0; break; case '5': dr=P4_1; break; case '6': dr=P1_3; break; case '8': dr=P1_0; break; } // endswitch printf("%X\r",dr); // Shows pin status delay(50); // Avoids console overflow } while (! kbhit()); // Wait key pressed getc(); break; case 'O': puts("\r\nSetting selected pin."); do { // Acquisisce stato da settare printf("\rInsert line status (0,1,>1 to exit):"); inputse(input, 8); // Acquires unsigned char dw=(uchar)atoi(input); switch (choice) // Sets selected pin status { case '2': P2_2=dw; break; case '3': P4_0=dw; break; case '5': P4_1=dw; break; case '6': P1_3=dw; break; case '8': P1_0=dw; break; } // endswitch } while (dw<2); break; } // endswitch } while (hlp!='E'); } void riti2c(void) /* Performs a delay for syncronous I2CBUS communication. The delay is sufficient for a 22 MHz clock, X1 modality */ { #asm nop nop nop nop nop nop nop nop nop nop nop nop nop nop nop #endasm } void starti2c(void) /* Generates start sequence for I2C BUS */ { if (minmod=='3') { SCL5115=0; // Start sequence with GMM 5115 SDA5115=1; riti2c(); SCL5115=1; SDA5115=0; riti2c(); SCL5115=0; } else { SCLCAN=0; // Start sequence with CAN GMx SDACAN=1; riti2c(); SCLCAN=1; SDACAN=0; riti2c(); SCLCAN=0; } //endif } void stopi2c(void) /* Generates stop sequences for I2C BUS */ { if (minmod=='3') { SCL5115=0; // Stop sequence with GMM 5115 SDA5115=0; riti2c(); SCL5115=1; SDA5115=1; riti2c(); SCL5115=0; } else { SCLCAN=0; // Stop sequence with CAN GMx SDACAN=0; riti2c(); SCLCAN=1; SDACAN=1; riti2c(); SCLCAN=0; } //endif } void wri2c_bit(unsigned char i2cbit) /* Serializes the D0 bit of i2cbit, on I2CBUS */ { if (minmod=='3') { SCL5115=0; // Sets SDA and generates positive pulse on SCL with GMM 5115 SDA5115=i2cbit; riti2c(); SCL5115=1; riti2c(); SCL5115=0; } else { SCLCAN=0; // Sets SDA and generates positive pulse on SCL with CAN GMx SDACAN=i2cbit; riti2c(); SCLCAN=1; riti2c(); SCLCAN=0; } //endif } unsigned char rdi2c_bit(void) /* Deserializes one bit from I2CBUS and saves it on lsb of the returned value */ { unsigned char biti2c; if (minmod=='3') { SDA5115=1; // Avoids conflicts in SDA acquisition SCL5115=0; // Ensures SCL status riti2c(); SCL5115=1; // Generates positive pulse on SCL and reads SDA biti2c=SDA5115; riti2c(); SCL5115=0; } else { SDACAN=1; // Avoids conflicts in SDA acquisition SCLCAN=0; // Ensures SCL status riti2c(); SCLCAN=1; // Generates positive pulse on SCL and reads SDA biti2c=SDACAN; riti2c(); SCLCAN=0; } //endif return biti2c; } void wri2c_byte(unsigned char i2cbyte) /* Serializes the i2cbyte byte on I2CBUS */ { unsigned char b; for (b = 1; b <= 8; b++) { if ((i2cbyte & 0x80) == 0) // Determines and sets b bit wri2c_bit(0); else wri2c_bit(1); i2cbyte = i2cbyte << 1; } } unsigned char rdi2c_byte(void) /* Deserializes one byte from I2CBUS and saves it in the returned value */ { unsigned char b,tmp; tmp = 0; for (b = 1; b <= 8; b++) { tmp = tmp << 1; tmp = tmp | rdi2c_bit(); // Gets and saves b bit } return tmp; } unsigned char wr_i2c(unsigned char i2csla,unsigned char i2cadd,unsigned char i2cdat) /* Writes the i2cdat byte to i2caddr address of the I2CBUS device that have the slave address i2csla. Returns a boolean flag that signals the operation result: 0=right,1=wrong */ { unsigned char i2cres; i2cres = 0; // Sets right result starti2c(); // Supplies start sequence wri2c_byte(i2csla); // Supplies slave address+W i2cres = i2cres | rdi2c_bit(); // Checks ACK on slave address+W wri2c_byte(i2cadd); // Supplies address i2cres = i2cres | rdi2c_bit(); // Check ACK on address wri2c_byte(i2cdat); // Supplies data i2cres = i2cres | rdi2c_bit(); // Check ACK on data stopi2c(); // Supplies stop sequence return i2cres; // Returns operation result } void setrtc(unsigned char wee,unsigned char yea,unsigned char mon,unsigned char day,unsigned char hou,unsigned char min,unsigned char sec) /* Sets current date and time on Mini Module RTC with data passed in parameters, selecting 24 hours format and interrupt each second */ { resi2c=wr_i2c(RTCSLA,0x00,0x84); // Sets stop resi2c=wr_i2c(RTCSLA,0x01,0x00); // Sets hundreds of seconds resi2c=wr_i2c(RTCSLA,0x02,bintobcd(sec)); // Sets seconds resi2c=wr_i2c(RTCSLA,0x03,bintobcd(min)); // Sets minutes resi2c=wr_i2c(RTCSLA,0x04,bintobcd(hou)); // Sets hours, 24h format resi2c=wr_i2c(RTCSLA,0x05,(bintobcd(day)|(yea<<6))); // Sets day and year resi2c=wr_i2c(RTCSLA,0x06,(bintobcd(mon)|(wee<<5)));// Sets month, week day resi2c=wr_i2c(RTCSLA,0x07,0x00); // Sets timer resi2c=wr_i2c(RTCSLA,0x00,0x00); // Sets start } void disrtcint(void) /* Disables /INT generation from PCF 8583 Real Time Clock */ { resi2c=wr_i2c(RTCSLA,0x00,0x04); // Disables RTC /INT resi2c=wr_i2c(RTCSLA,0x08,0x00); } unsigned char peekb(unsigned int addr) /* Reads the byte from addr address of external data area and returns it */ { return *(xdata unsigned char *)addr; // Gets byte from location } void rd_ee(unsigned int eeaddr,unsigned char *eedat) /* Reads the eedat byte from eeaddr address of internal EEPROM */ { AUXR=0x2E; // Deselects ERAM and increase MOVX duration EECON=0x02; // Selects microprocessor EEPROM on external data area *eedat=peekb(eeaddr); // Performs EEPROM reading AUXR=0x0C; // Selects ERAM on external data area EECON=0x00; // Disables microprocessor EEPROM } /**************************************************************************** Main program ****************************************************************************/ void main(void) { init_cpu(); // Initializes the used CPU iniser(19200); // Initializes serial line for console with timer 1 setP1234inp(); // Sets Port 1,2,3,4 as INPUT clrscr(); // Selects used Mini Module puts("1->CAN GM1 , 2->CAN GM2 , 3->GMM 5115"); printf("Select Mini Module mounted on ZC1 socket (1,2,3):"); do minmod=toupper(getc()); while ((minmod<'1') || (minmod>'3')); if (minmod!='3') // If Mini Module has RTC disrtcint(); // Disables RTC interrupt and LD6 that shows its status for(;;) // Endless loop { clrscr(); // Shows demo program menu` printf("Demo program for TTL I/O lines on GMB HR84 in uC/51 - Rel. 1.1 with "); switch (minmod) { case '1': puts("CAN GM1"); break; case '2': puts("CAN GM2"); break; case '3': puts("GMM 5115"); break; } // endswitch if (minmod=='3') // Cycle that waits card ready { // on GMM 5115 do rd_ee(0x07F8,&dr); while (dr!=0); } else { // on CAN GM1, CAN GM2 do { dr=P2_1; starti2c(); wri2c_byte(0xA0); dw=rdi2c_bit(); } while ((dr==0) || (dw==1)); } // endif ADCF=0x00; // Sets all P1 as I/O, not A/D puts(""); puts("On CN4 are available the following digital I/O pins:"); puts("6=MM PIN 24"); // I/O available on each Mini Modules puts("8=MM PIN 27"); switch (minmod) { case '1': puts("4=MM PIN 5"); // Other I/O of CAN GM1 module puts("2=MM PIN 12"); break; case '2': puts("4=MM PIN 5"); // Other I/O of CAN GM2 module break; case '3': puts("3=MM PIN 8"); // Other I/O of GMM 5115 module puts("5=MM PIN 9"); break; } // endswitch printf("Select pin:"); choice=getc(); putc(choice); switch (choice) { case '2': demoiopin(); // Pin 2 CN4 management demo break; case '3': demoiopin(); // Pin 3 CN4 management demo break; case '4': puts(""); // Pin 4 CN4 management demo puts("Pin 4 of CN4 is connected to /INTRTC of Mini Module that offers interesting"); puts("autonomous functionalities, and it is displayed by LD6 LED."); puts("The demo generates an 1 Hz square waveform until a key is pressed."); setrtc(0,0,1,1,0,0,0);// Resets RTC and enables /INT each sec choice=getc(); // Waits key pressed disrtcint(); // Disables /INT from RTC break; case '5': demoiopin(); // Pin 5 CN4 management demo break; case '6': demoiopin(); // Pin 6 CN4 management demo break; case '8': printf("\r\nOn pin 8 of CN4 is connected a 4,7K pulldown resistor."); demoiopin(); // Pin 8 CN4 management demo break; } // endswitch } //endfor (;;) // End of endless loop }