UCC A2
UART Communication Card
BUS Abaco® 2 serial lines

TECHNICAL MANUAL
Peripheral module for **ABACO® industrial BUS**; half EUROPE format 100x80mm; **SCC Z85c30** with **11.0592 MHz** oscillator, which is capable to manage **HDLC**, **SDLC**, etc. protocols; protocol and **Baud rate**, up to **115 K baud**, are software settable; 4 pins **Dip Switch** software readable; 2 serial lines bufferable as **RS 232, RS 422, RS 485** or **Current Loop**; 6 LEDs, installed on the front, to visualize the status of TX, RX and RTS signals; possibility to generate an **interrupt** signal to connect to /INT or /NMI BUS signals; **ABACO® industrial BUS** addressing space as low as 4 bytes only; 6 pins **Dip Switch** for I/O address setting; unique **5Vdc** power supply, **45mA** current consumption (basic configuration).
IMPORTANT

Although all the information contained herein have been carefully verified, grifo® assumes no responsibility for errors that might appear in this document, or for damage to things or persons resulting from technical errors, omission and improper use of this manual and of the related software and hardware.

grifo® reserves the right to change the contents and form of this document, as well as the features and specification of its products at any time, without prior notice, to obtain always the best product.

For specific informations on the components mounted on the card, please refer to the Data Book of the builder or second sources.

SYMBOLS DESCRIPTION

In the manual could appear the following symbols:

![Attention: Generic danger](image)

Attention: Generic danger

![Attention: High voltage](image)

Attention: High voltage

Trade Marks

GPC®, grifo®: are trade marks of grifo®.

Other Product and Company names listed, are trade marks of their respective companies.
GENERAL INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CARD VERSION</td>
<td>1</td>
</tr>
<tr>
<td>BOARD FEATURES</td>
<td>2</td>
</tr>
<tr>
<td>TECHNICAL FEATURES</td>
<td>4</td>
</tr>
<tr>
<td>GENERAL FEATURES</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICAL FEATURES</td>
<td>4</td>
</tr>
<tr>
<td>ELECTRIC FEATURES</td>
<td>5</td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>6</td>
</tr>
<tr>
<td>VISUAL SIGNALATIONS</td>
<td>6</td>
</tr>
<tr>
<td>CONNECTIONS</td>
<td>6</td>
</tr>
<tr>
<td>CN1 - CONNECTOR FOR BUS ABACO®</td>
<td>8</td>
</tr>
<tr>
<td>CN2A - SERIAL LINE A CONNECTOR</td>
<td>10</td>
</tr>
<tr>
<td>CN2B - SERIAL LINE B CONNECTOR</td>
<td>12</td>
</tr>
<tr>
<td>JUMPERS</td>
<td>17</td>
</tr>
<tr>
<td>2 PINS JUMPERS</td>
<td>17</td>
</tr>
<tr>
<td>3 PINS JUMPERS</td>
<td>18</td>
</tr>
<tr>
<td>SOLDER JUMPERS</td>
<td>18</td>
</tr>
<tr>
<td>I/O CONNECTION</td>
<td>18</td>
</tr>
<tr>
<td>SERIAL COMMUNICATION SELECTION</td>
<td>20</td>
</tr>
<tr>
<td>INTERRUPTS</td>
<td>25</td>
</tr>
<tr>
<td>CONFIGURATION INPUT</td>
<td>25</td>
</tr>
<tr>
<td>ADDRESSES AND MAPS</td>
<td>26</td>
</tr>
<tr>
<td>BOARD MAPPING</td>
<td>26</td>
</tr>
<tr>
<td>I/O ADDRESSES</td>
<td>27</td>
</tr>
<tr>
<td>PERIPHERAL DEVICES SOFTWARE DESCRIPTION</td>
<td>28</td>
</tr>
<tr>
<td>CONFIGURATION INPUT</td>
<td>28</td>
</tr>
<tr>
<td>SCC 85C30</td>
<td>28</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>38</td>
</tr>
<tr>
<td>APPENDIX A: ALPHABETICAL INDEX</td>
<td>38</td>
</tr>
</tbody>
</table>
FIGURES INDEX

FIGURE 1: BLOCK DIAGRAM ... 3
FIGURE 2: CARD PHOTO ... 5
FIGURE 3: VISUAL SIGNALATIONS TABLE ... 6
FIGURE 4: CONNECTORS, LEDS, DIP SWITCH, ETC. LOCATION ... 7
FIGURE 5: CN1 - BUS ABACO® CONNECTOR .. 8
FIGURE 6: CN2A - SERIAL LINE A CONNECTOR .. 10
FIGURE 7: RS 232 POINT TO POINT CONNECTION EXAMPLE .. 11
FIGURE 8: RS 485 POINT TO POINT CONNECTION EXAMPLE .. 11
FIGURE 9: CN2B - SERIAL LINE B CONNECTOR ... 12
FIGURE 10: RS 422 POINT TO POINT CONNECTION EXAMPLE .. 13
FIGURE 11: 4 WIRES CURRENT LOOP POINT TO POINT CONNECTION EXAMPLE 14
FIGURE 12: 2 WIRES CURRENT LOOP POINT TO POINT CONNECTION EXAMPLE 14
FIGURE 13: SERIAL COMMUNICATION DIAGRAM .. 15
FIGURE 14: RS 485 NETWORK CONNECTION EXAMPLE .. 16
FIGURE 15: JUMPERS SUMMARIZING TABLE ... 17
FIGURE 16: 2 PINS JUMPERS TABLE ... 17
FIGURE 17: 3 PINS JUMPERS TABLE .. 18
FIGURE 18: JUMPERS LOCATION (COMPONENT SIDE) ... 19
FIGURE 19: JUMPERS LOCATION (SOLDER SIDE) ... 19
FIGURE 20: SERIAL LINE A COMMUNICATION DRIVERS LOCATION .. 21
FIGURE 21: SERIAL LINE B COMMUNICATION DRIVERS LOCATION .. 23
FIGURE 22: INTERNAL REGISTERS ADDRESSES TABLE .. 27
FIGURE 23: COMPONENTS MAP (COMPONENTS SIDE ABOVE, SOLDER SIDE BELOW) 27
FIGURE 24: AVAILABLE CONNECTIONS DIAGRAM ... 37
INTRODUCTION

The use of these devices has turned - IN EXCLUSIVE WAY - to specialized personnel.

The purpose of this handbook is to give the necessary information to the cognizant and sure use of the products. They are the result of a continual and systematic elaboration of data and technical tests saved and validated from the manufacturer, related to the inside modes of certainty and quality of the information.

The reported data are destined- IN EXCLUSIVE WAY- to specialized users, that can interact with the devices in safety conditions for the persons, for the machine and for the environment, impersonating an elementary diagnostic of breakdowns and of malfunction conditions by performing simple functional verify operations , in the height respect of the actual safety and health norms.

The informations for the installation, the assemblage, the dismantlement, the handling, the adjustment, the reparation and the contingent accessories, devices etc. installation are destined - and then executable - always and in exclusive way from specialized warned and educated personnel, or directly from the TECHNICAL AUTHORIZED ASSISTANCE, in the height respect of the manufacturer recommendations and the actual safety and health norms.

The devices can't be used outside a box. The user must always insert the cards in a container that respect the actual safety normative. The protection of this container is not threshold to the only atmospheric agents, but specially to mechanic, electric, magnetic, etc. ones.

To be on good terms with the products, is necessary guarantee legibility and conservation of the manual, also for future references. In case of deterioration or more easily for technical updates, consult the AUTHORIZED TECHNICAL ASSISTANCE directly.

To prevent problems during card utilization, it is a good practice to read carefully all the informations of this manual. After this reading, the user can use the general index and the alphabetical index, respectly at the begining and at the end of the manual, to find information in a faster and more easy way.

CARD VERSION

The present handbook is reported to the UCC A2 card release 291299 and later. The validity of the bring informations is subordinate to the number of the card release. The user must always verify the correct correspondence among the two denotations. On the card the release number is present in more points both board printed diagram (serigraph) and printed circuit (for example between UART and drivers on the component side).
BOARD FEATURES

UCC A2 (Uart Communication Card Bus ABACO® 2 lines) board is a powerful module designed for ABACO® industrial BUS serial communications featuring remarkable possibilities of interfacement to several external devices.

The board is based on the flexible Zilog SCC 85c30, which can support asynchronous communication and even, without external devices, well developed protocols like HDLC and SDLC.

The UCC A2 board comes in half Europe format 100x80mm, it manages separately 2 serial lines whose protocols and communication speeds are software settable; each of the 2 lines manage in autonomy the 4 canonical signals: TxD, RxD, CTS, RTS. In addition, each communication line can be buffered as RS 232, RS 422, RS 485 or CURRENT LOOP. At last, 3 of these signals are monitored separately for the 2 serial lines through LEDs.

The asynchronous communication can be made employing one of the following communication protocols:

- Baud rate selectable amongst 150 and 115.2 KBaum
- Stop bit selectable amongst 1; 1.5 and 2 bits
- Word length selectable from 5 to 8 bits
- Parity can be even, odd or none

A software readable 4-pins Dip Switch allows the User to set on the board particular conditions to inform the firmware about a particular situation (for example; a certain Baud rate and communication protocol have been chosen).

UCC A2 board takes 4 bytes of addressing space where all the registers that allow software management and programming of the board are allocated.

These addresses can be allocated in the ABACO® industrial BUS addressing space through a 6 pins Dip Switch.

The board is capable to generate an interrupt signal when specific software settable events occur.

- Peripheral module for ABACO® industrial BUS.
- Half EUROPE format 100x80mm.
- SCC Z85c30 with 11.0592 MHz oscillator, which is capable to manage HDLC, SDLC, etc. protocols; protocol and Baud rate, up to 115 KBaum, are software settable.
- 4 pins Dip Switch software readable.
- 2 serial lines bufferable as RS 232, RS 422, RS 485 or Current Loop.
- 6 LEDs, installed on the front, to visualize the status of TX, RX and RTS signals.
- Possibility to generate an interrupt signal to connect to /INT or /NMI BUS signals.
- ABACO® industrial BUS addressing space as low as 4 bytes only.
- 6 pins Dip Switch for I/O address setting.
- Unique 5Vdc power supply, 45mA current consumption (basic configuration).
Figure 1: Block diagram
TECHNICAL FEATURES

GENERAL FEATURES

Board Resources:
- Interface for **ABACO® industrial BUS**.
- **4 pins Dip switch** software readable.
- **6 pins Dip switch** to set I/O address.
- 2 Full Duplex serial lines in RS 232, RS 422, RS 485 or Current-Loop.

UART:
Zilog SCC 85c30

Crystal (clock) frequency:
11.0592 MHz

BUS Interface:
8 bits wide BUS for data and address.
256 bytes total addressing space.
4 bytes of I/O space occupied.

PHYSICAL FEATURES

Size (W x H x D):
Half Eurocard standard format: 100 x 80 x 17 mm

Weight:
85 g
(basic version)

Connectors:
CN1: 64 pin DIN 41612 A+C type C
CN2A: 6 pins, Plug, female, 90 degreeses
CN2B: 6 pins, Plug, female, 90 degreeses

Temperature range:
from 0 to 70 Centigrad degreeses

Relative humidity:
20% up to 90%
(without condens)
ELECTRIC FEATURES

Power Supply: +5 Vdc

Consumption on 5 Vdc: 45 mA (default RS 232 configuration)
90 mA (maximum configuration)

RS 422, RS 485 line termination:
- Line termination resistance = 120 Ω
- Positive pull up resistance = 3.3 KΩ
- Negative pull up resistance = 3.3 KΩ

FIGURE 2: CARD PHOTO
INSTALLATION

In this chapter there are the information for a right installation and correct use of the card. The user can find the location and functions of each connectors, jumpers and some explanatory diagrams.

VISUAL SIGNALATIONS

UCC A2 board is provided with six LEDs in order to signal to the User some internal status conditions, as described in the following table:

<table>
<thead>
<tr>
<th>LED</th>
<th>COLOUR</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD1</td>
<td>Red</td>
<td>Indicates data traffic on signal TxB of serial line B.</td>
</tr>
<tr>
<td>LD2</td>
<td>Red</td>
<td>Indicates data traffic on signal RxB of serial line B.</td>
</tr>
<tr>
<td>LD3</td>
<td>Green</td>
<td>Indicates data traffic on signal TxA of serial line A.</td>
</tr>
<tr>
<td>LD4</td>
<td>Green</td>
<td>Indicates data traffic on signal RxA of serial line A.</td>
</tr>
<tr>
<td>LD5</td>
<td>Red</td>
<td>Indicates the status of signal RTSB of serial line B; when the LED is lit the signal is at logic level 0 and viceversa.</td>
</tr>
<tr>
<td>LD6</td>
<td>Green</td>
<td>Indicates the status of signal RTSA of serial line A; when the LED is lit the signal is at logic level 0 and viceversa.</td>
</tr>
</tbody>
</table>

Figure 3: Visual signalations table

The main purpose of this LED is to provide the user a visual indication of the board status, making easier the operations to verify the correct working of the system. To easily locate the LEDs on the board please see figure 5.

CONNECTIONS

The UCC A2 module has 3 connectors that can be linkeded to other devices or directly to the field, according to system requirements. In this paragraph there are connectors pin out, a short signals description (including the signals direction) and connectors location (see figure 5). For further information about serial connections, please refer to the successive figures, which show the kind of board connection to perform.
FIGURE 4: CONNETTORS, LEDs, DIP SWITCH, ETC. LOCATION
The connector for ABACO® industrial BUS, called CN1 on board, is a DIN 41612, male, a 90°, type C, A+C.

Here follows the pin-out of the connector installed on UCC A2, in addition there is the standard 8 bits and 16 bits ABACO® BUS pin-out.

Please remark that all the signals here described are TTL, except for the power supplies.

<table>
<thead>
<tr>
<th>PIN</th>
<th>UCC A2</th>
<th>8 bit BUS</th>
<th>16 bit BUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
</tr>
<tr>
<td>3</td>
<td>D0</td>
<td>D0</td>
<td>D8</td>
</tr>
<tr>
<td>4</td>
<td>D1</td>
<td>D1</td>
<td>D9</td>
</tr>
<tr>
<td>5</td>
<td>D2</td>
<td>D2</td>
<td>D10</td>
</tr>
<tr>
<td>6</td>
<td>D3</td>
<td>D3</td>
<td>/INT</td>
</tr>
<tr>
<td>7</td>
<td>D4</td>
<td>D4</td>
<td>/INT</td>
</tr>
<tr>
<td>8</td>
<td>D5</td>
<td>D5</td>
<td>/INT</td>
</tr>
<tr>
<td>9</td>
<td>D6</td>
<td>D6</td>
<td>/INT</td>
</tr>
<tr>
<td>10</td>
<td>D7</td>
<td>D7</td>
<td>/INT</td>
</tr>
<tr>
<td>11</td>
<td>A0</td>
<td>A0</td>
<td>/INT</td>
</tr>
<tr>
<td>12</td>
<td>A1</td>
<td>A1</td>
<td>/INT</td>
</tr>
<tr>
<td>13</td>
<td>A2</td>
<td>A2</td>
<td>/INT</td>
</tr>
<tr>
<td>14</td>
<td>A3</td>
<td>A3</td>
<td>/INT</td>
</tr>
<tr>
<td>15</td>
<td>A4</td>
<td>A4</td>
<td>/INT</td>
</tr>
<tr>
<td>16</td>
<td>A5</td>
<td>A5</td>
<td>/INT</td>
</tr>
<tr>
<td>17</td>
<td>A6</td>
<td>A6</td>
<td>/INT</td>
</tr>
<tr>
<td>18</td>
<td>A7</td>
<td>A7</td>
<td>/INT</td>
</tr>
<tr>
<td>19</td>
<td>A8</td>
<td>N.C.</td>
<td>/INT</td>
</tr>
<tr>
<td>20</td>
<td>A9</td>
<td>N.C.</td>
<td>/INT</td>
</tr>
<tr>
<td>21</td>
<td>A10</td>
<td>N.C.</td>
<td>/INT</td>
</tr>
<tr>
<td>22</td>
<td>A11</td>
<td>N.C.</td>
<td>/INT</td>
</tr>
<tr>
<td>23</td>
<td>A12</td>
<td>N.C.</td>
<td>/INT</td>
</tr>
<tr>
<td>24</td>
<td>A13</td>
<td>N.C.</td>
<td>/INT</td>
</tr>
<tr>
<td>25</td>
<td>A14</td>
<td>N.C.</td>
<td>/INT</td>
</tr>
<tr>
<td>26</td>
<td>A15</td>
<td>N.C.</td>
<td>/INT</td>
</tr>
<tr>
<td>27</td>
<td>A16</td>
<td>N.C.</td>
<td>/INT</td>
</tr>
<tr>
<td>28</td>
<td>A17</td>
<td>N.C.</td>
<td>/INT</td>
</tr>
<tr>
<td>29</td>
<td>A18</td>
<td>N.C.</td>
<td>/INT</td>
</tr>
<tr>
<td>30</td>
<td>+12 Vdc</td>
<td>N.C.</td>
<td>/INT</td>
</tr>
<tr>
<td>31</td>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
<td>/INT</td>
</tr>
<tr>
<td>32</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>

Figure 5: CN1 - BUS ABACO® connector
Signals description:

8 bits CPU

- **A0-A15** = O - Address BUS
- **D0-D7** = I/O - Data BUS
- **/INT** = I - Interrupt request
- **/NMI** = I - Non Maskable Interrupt
- **/HALT** = O - Halt state
- **/MREQ** = O - Memory Request
- **/IORQ** = O - Input Output Request
- **/RD** = O - Read cycle status
- **/WR** = O - Write cycle status
- **/BUSAK** = O - BUS Acknowledge
- **/WAIT** = I - Wait
- **/BUSRQ** = I - BUS Request
- **/RESET** = O - Reset
- **/M1** = O - Machine cycle one
- **/RFSH** = O - Refresh for dynamic RAM
- **/MEMDIS** = I - Memory Display
- **VDUSEL** = O - VDU Selection
- **/IEI** = I - Interrupt Enable Input
- **CLK** = O - System clock
- **R.B.** = I - Reset button
- **+5 Vdc** = I - Power supply at +5 Vdc
- **+12 Vdc** = I - Power supply at +12 Vdc
- **-12 Vdc** = I - Power supply at -12 Vdc
- **GND** = - Ground signal

16 bits CPU

- **A16-A22** = O - Address BUS
- **D8-D15** = I/O - Data BUS
- **/RD UDS** = O - Read Upper Data Strobe
- **/WR UDS** = O - Write Upper Data Strobe
- **/IACK** = O - Interrupt Acknowledge
- **/RD LDS** = O - Read Lower Data Strobe
- **/WR LDS** = O - Write Lower Data Strobe

NOTE

Directionality indications as above stated are referred to a master (GPC®) board and have been kept untouched to avoid ambiguity in case of multi-boards systems.
CN2A - SERIAL LINE A CONNECTOR

CN2A is a 6 pins, female PLUG connector for serial line A, that can be buffered as RS 232, RS 422, RS 485 or Current Loop. Physically, serial line A of UCC A2 board is connected to serial line A. Placing of the signal has been designed to reduce interference and electrical noise and to simplify connections with other systems, while the electric protocol follows the CCITT normative.

Signals description:

- **RXA RS 232** = I - Serial line A RS 232 Receive Data.
- **TXA RS 232** = O - Serial line A RS 232 Transmit Data.
- **CTSA RS 232** = I - Serial line A RS 232 Clear To Send.
- **RTSA RS 232** = O - Serial line A RS 232 Request To Send.
- **RXA- RS 422** = I - Receive Data Negative: Serial line A negative signal for RS 422 serial differential receive.
- **RXA+ RS 422** = I - Receive Data Positive: Serial line A positive signal for RS 422 serial differential receive.
- **TXA- RS 422** = O - Transmit Data Negative: Serial line A negative signal for RS 422 serial differential transmit.
- **TXA+ RS 422** = O - Transmit Data Positive: Serial line A positive signal for RS 422 serial differential transmit.
- **RXTXA- RS 485** = I/O - Receive Transmit Data Negative: Serial line A negative signal for RS 485 serial differential receive and transmit.
- **RXTXA+ RS 485** = I/O - Receive Transmit Data Positive: Serial line A positive signal for RS 485 serial differential receive and transmit.
RXTXA+ RS 485

I/O - Receive Transmit Data Positive: Serial line A positive signal for RS 485 serial differential receive and transmit.

RXA- C.L.

= I - Receive Data Negative: Serial line A negative signal for Current Loop serial bipolar receive.

RXA+ C.L.

= I - Receive Data Positive: Serial line A positive signal for Current Loop serial bipolar receive.

TXA- C.L.

= O - Transmit Data Negative: Serial line A negative signal for Current Loop serial bipolar transmit.

TXA+ C.L.

= O - Transmit Data Positive: Serial line A positive signal for Current Loop serial bipolar transmit.

+5 Vdc/GND

= I - +5 Vdc or ground signal.

GND

= Ground signal.

NOTE

Handshake signal CTSA must be connected to another serial system, if it is going to be software managed. This is essential to acquire its status without ambiguity.

Figure 7: RS 232 point to point connection example

```
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXA</td>
<td>TXA</td>
<td>RTSA</td>
<td>CTS</td>
<td>RXA</td>
<td>TXA</td>
</tr>
<tr>
<td>RXB</td>
<td>TXB</td>
<td>RTS</td>
<td>CTSB</td>
<td>RXB</td>
<td>TXB</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>
```

Figure 8: RS 485 point to point connection example

```
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXTXA-</td>
<td>RXTXB-</td>
<td>RXA</td>
<td>CTS</td>
<td>RXA</td>
<td>TXA</td>
</tr>
<tr>
<td>RXTXA+</td>
<td>RXTXB+</td>
<td>TXA</td>
<td>RTS</td>
<td>TXA</td>
<td>TXA</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>
```

CNB - SERIAL LINE B CONNECTOR

CNB is a 6 pins, female PLUG connector for serial line B, that can be buffered as RS 232, RS 422, RS 485 or Current Loop. Physically, serial line B of UCC A2 board is connected to serial line B. Placing of the signal has been designed to reduce interference and electrical noise and to simplify connections with other systems, while the electric protocol follows the CCITT normative.

Figure 9: CNB - SERIAL LINE B CONNECTOR

Signals description:

- **RXB RS 232** = I - Serial line B RS 232 Receive Data.
- **TXB RS 232** = O - Serial line B RS 232 Transmit Data.
- **CTSB RS 232** = I - Serial line B RS 232 Clear To Send.
- **RTSB RS 232** = O - Serial line B RS 232 Request To Send.
- **RXB- RS 422** = I - Receive Data Negative: Serial line B negative signal for RS 422 serial differential receive.
- **RXB+ RS 422** = I - Receive Data Positive: Serial line B positive signal for RS 422 serial differential receive.
- **TXB- RS 422** = O - Transmit Data Negative: Serial line B negative signal for RS 422 serial differential transmit.
- **TXB+ RS 422** = O - Transmit Data Positive: Serial line B positive signal for RS 422 serial differential transmit.
- **RXTXB- RS 485** = I/O - Receive Transmit Data Negative: Serial line B negative signal for RS 485 serial differential receive and transmit.
- **RXTXB+ RS 485** = I/O - Receive Transmit Data Positive: Serial line B positive signal for RS 485 serial differential receive and transmit.
NOTE
Handshake signal CTSB must be connected to another serial system, if it is going to be software managed. This is essential to acquire its status without ambiguity.

Figure 10: RS 422 Point to Point Connection Example

- **RXA-, RXB-**
- **RXA+, RXB+**
- **TXA-, TXB-**
- **TXA+, TXB+**
- **GND**

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>RXA-, RXB-</td>
</tr>
<tr>
<td>5</td>
<td>RXA+, RXB+</td>
</tr>
<tr>
<td>3</td>
<td>TXA-, TXB-</td>
</tr>
<tr>
<td>2</td>
<td>TXA+, TXB+</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td>External System</td>
</tr>
<tr>
<td></td>
<td>TX -</td>
</tr>
<tr>
<td></td>
<td>TX +</td>
</tr>
<tr>
<td></td>
<td>RX -</td>
</tr>
<tr>
<td></td>
<td>RX +</td>
</tr>
<tr>
<td></td>
<td>GND</td>
</tr>
</tbody>
</table>

RXTXB+ RS 485 = I/O- Receive Transmit Data Positive: Serial line B positive signal for RS 485 serial differential receive and transmit.

RXB- C.L. = I - Receive Data Negative: Serial line B negative signal for Current Loop serial bipolar receive.

RXB+ C.L. = I - Receive Data Positive: Serial line B positive signal for Current Loop serial bipolar receive.

TXB- C.L. = O - Transmit Data Negative: Serial line B negative signal for Current Loop serial bipolar transmit.

TXB+ C.L. = O - Transmit Data Positive: Serial line B positive signal for Current Loop serial bipolar transmit.

+5 Vdc/GND = I - +5 Vdc or ground signal.

GND = - Ground signal.
It is possible to see the voltage for V_{CL} and the resistances for current limitation (R). The supply voltage varies in compliance with the number of connected devices and voltage drop on the connection cable.

The choice of the values for these components must be done considering that:
- circulation of a 20 mA current must be guaranteed;
- in case of shortcircuit each transmitter must dissipate at most 125 mW;
- in case of shortcircuit each receiver must dissipate at most 90 mW.

For further info please refer to HEWLETT-PACKARD Data Book, (HCPL 4100 and 4200 devices).
Figure 13: Serial communication diagram
Please remark that in a RS 485 network two forcing resistors must be connected across the net and two termination resistors (120 Ω) must be placed at its extremities, respectively near the Master unit and the Slave unit at the greatest distance from the Master.

Forcing and terminating circuitry is installed on UCC A2 board. It can be enabled or disabled through specific jumpers, as explained later.

For further informations please refer to TEXAS INSTRUMENTS Data-Book, "RS 422 and RS 485 Interface Circuits", the introduction about RS 422-485.
JUMPERS

On UCC A2 there are 9 jumpers (2 of them are solder jumpers) for card configuration. Connecting these jumpers, the user can define for example the memory type and size, the peripheral devices functionality and so on. Here below is the jumpers list, location and function:

<table>
<thead>
<tr>
<th>JUMPERS</th>
<th>N. PINS</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>3</td>
<td>Connects to BUS ABACO® the signal /INT coming from SCC 85c30.</td>
</tr>
<tr>
<td>J2, J3</td>
<td>2</td>
<td>Connect RS 422 and RS 485 forcing and terminating circuitry of serial line A.</td>
</tr>
<tr>
<td>J4</td>
<td>3</td>
<td>Selects directionality and activation modality of serial line A in RS 422 and RS 485.</td>
</tr>
<tr>
<td>J5</td>
<td>3</td>
<td>Selects directionality and activation modality of serial line B in RS 422 and RS 485.</td>
</tr>
<tr>
<td>J6, J7</td>
<td>2</td>
<td>Connect RS 422 and RS 485 forcing and terminating circuitry of serial line B.</td>
</tr>
<tr>
<td>JS1</td>
<td>3</td>
<td>Selects connection for pin 1 of CN2A.</td>
</tr>
<tr>
<td>JS2</td>
<td>3</td>
<td>Selects connection for pin 1 of CN2B.</td>
</tr>
</tbody>
</table>

FIGURE 15: JUMPERS SUMMARIZING TABLE

The following tables describe all the right connections of UCC A2 jumpers with their relative functions. To recognize these valid connections, please refer to the board printed diagram (serigraph) or to figures 1 or 2 of this manual, where the pins numeration is listed, while for recognizing jumpers location, please refer to figures 19 and 20.

The "*" used in the following tables, denotes the default connection, or on the other hand the connection set up at the end of testing phase, that is the configuration the user receives.

2 PINS JUMPERS

<table>
<thead>
<tr>
<th>JUMPER</th>
<th>CONNECTION</th>
<th>PURPOSE</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2, J3</td>
<td>not connected</td>
<td>Do not connect forcing and terminating circuitry to RS 485 serial line or to RS 422 reception line of serial line A. Connect forcing and terminating circuitry to RS 485 serial line or to RS 422 reception line of serial line A.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J6, J7</td>
<td>not connected</td>
<td>Do not connect forcing and terminating circuitry to RS 485 serial line or to RS 422 reception line of serial line B. Connect forcing and terminating circuitry to RS 485 serial line or to RS 422 reception line of serial line B.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 16: 2 PINS JUMPERS TABLE
3 PINS JUMPERS

<table>
<thead>
<tr>
<th>JUMPERS</th>
<th>CONNECTION</th>
<th>PURPOSE</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>position 1-2</td>
<td>Connects signal /INT of SCC 85c30 to signal /INT of BUS ABACO® BUS (pin 6c on CN1). Connects signal /INT of SCC 85c30 to signal /NMI of BUS ABACO® BUS (pin 7c on CN1).</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Does not connect signal /INT of SCC 85c30 to BUS ABACO®.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>not connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J4</td>
<td>position 1-2</td>
<td>Selects communication for serial line A in RS 485 (half duplex with 2 fili).</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Selects communication for serial line A in RS 422 (full duplex or half duplex with 4 fili).</td>
<td></td>
</tr>
<tr>
<td>J5</td>
<td>position 1-2</td>
<td>Selects communication for serial line B in RS 485 (half duplex with 2 fili).</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Selects communication for serial line B in RS 422 (full duplex or half duplex with 4 fili).</td>
<td></td>
</tr>
<tr>
<td>JS1</td>
<td>position 1-2</td>
<td>Connects pin 1 of CN2A to GND.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Connects pin 1 of CN2A to +5 Vdc.</td>
<td></td>
</tr>
<tr>
<td>JS2</td>
<td>position 1-2</td>
<td>Connects pin 1 of CN2B to GND.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Connects pin 1 of CN2B to +5 Vdc.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 17: 3 pins jumpers table

SOLDER JUMPERS

The solder jumpers called JSxx are connected by a thin copper connection on the solder side. So, if one of their configurations has to be changed, the user must first cut this connection using a sharpened cutter, then make the new connection using a low power soldering tool and some non corrosive tin.

I/O CONNECTION

To prevent possible connecting problems between UCC A2 and the external systems, the user has to read carefully the information of the previous paragraphs and he must follow these instructions:

- For RS 232, RS 422, RS 485 and current loop communication signals the user must follow the standard rules of these protocols.
- For all TTL signals the user must follow the rules of this electric standard. The connected digital signal must be always referred to card digital ground (GND). For TTL signals, the 0 Vdc level corresponds to logic state "0", while 5Vdc level corresponds to logic state "1".
Figure 18: Jumpers Location (Component Side)

Figure 19: Jumpers Location (Solder Side)
SERIAL COMMUNICATION SELECTION

Please remember that if not differently specified during the order phase, the card is delivered in its default configuration with two RS 232 serial line.

The serial line A is available on connector CN2A and can be buffered in RS 232, RS 422, RS 485 or current loop electric standard. By hardware can be selected which one of these electric standard is used, through jumpers connection (as described in the previous table). By software the serial line can be programmed to operate with 8, 9 bits per character, no parity, 1 stop bits at standard or no standard baud rates, through some some CPU internal register setting.

Some components necessary for RS 422 and RS 485 communication are not mounted and not tested on the default configuration card, so the first not standard configuration must always be executed by grifo® technician; then the user can change himself the configuration, following the below description (jumpers not mentioned in the below description have no influence on communication):

- SERIAL LINE A CONFIGURED IN RS 232 (default configuration)

 - J2, J3 = not connected
 - J4 = don't care

 - IC5 = driver MAX 202
 - IC9 = no component
 - IC10 = no component
 - IC11 = no component
 - IC12 = no component

- SERIAL LINE A CONFIGURED IN CURRENT LOOP (CLOOP option)

 - J2, J3 = not connected
 - J4 = don't care

 - IC5 = no component
 - IC9 = driver HP 4100
 - IC10 = driver HP 4200
 - IC11 = no component
 - IC12 = no component

Please remark that current loop serial interface is passive, so it must be connected an active Current Loop serial line, that is a line provided with its own power supply. Current loop interface can be employed to make both point to point and multi point connections through a 2 wires or a 4 wires connection as described in figures 11÷14.

- SERIAL LINE A CONFIGURED IN RS 422 (RS422 option)

 - J2, J3 = (*1)
 - J4 = position 2-3

 - IC5 = no component
 - IC9 = no component
 - IC10 = no component
 - IC11 = driver MAX 483 or SN 75176
 - IC12 = driver MAX 483 or SN 75176

Status of signal /RTSA, which is software managed, allows to enable or disable the transmitter as follows:

 /RTSA = low level = logic state 0 -> transmitter enabled
 /RTSA = high level = logic state 1 -> transmitter disabled

In point to point connections, signal /RTSA can be always kept low (transmitter always enabled), while in multi point connections transmitter must be enabled only when a transmission is requested.
Figure 20: Serial Line A Communication Drivers Location

Serial A in RS 232
Serial A in Current Loop
Serial A in RS 422
Serial A in RS 485
- SERIAL LINE A CONFIGURED IN RS 485 (.RS485 option)
 IC5 = no component
 J2, J3 = (*1)
 J4 = position 1-2
 IC9 = no component
 IC10 = no component
 IC11 = no component
 IC12 = driver MAX 483 or SN 75176

In this modality the signals to use are pins 4 and 5 of connector CN2A, that become transmission or reception lines according to the status of signal /RTSA, managed by software, as follows:

 /RTSA = low level = logic state 0 -> transmitter enabled
 /RTSA = high level = logic state 1 -> transmitter disabled

This kind of serial communication can be used for multi point connections, in addition it is possible to listen to own transmission, so the user is allowed to verify the succes of transmission. In fact, any conflict on the line can be recognized by testing the received character after each transmission.

(*1) If using the RS 422 or RS 485 serial line, it is possible to connect the terminating and forcing circuit on the line by using J2 and J3. This circuit must be always connected in case of point to point connections, while in case of multi point connections it must be connected only in the farest boards, that is on the edges of the communication line.

- SERIAL LINE B CONFIGURED IN RS 232 (default configuration)
 IC2 = driver MAX 202
 J6, J7 = not connected
 J5 = don't care
 IC7 = no component
 IC8 = no component
 IC13 = no component
 IC14 = no component

- SERIAL LINE B CONFIGURED IN CURRENT LOOP (.CLOOP option)
 IC2 = no component
 J6, J7 = not connected
 J5 = don't care
 IC7 = driver HP 4100
 IC8 = driver HP 4200
 IC13 = no component
 IC14 = no component

Please remark that current loop serial interface is passive, so it must be connected an active Current Loop serial line, that is a line provided with its own power supply. Current loop interface can be employed to make both point to point and multi point connections through a 2 wires or a 4 wires connection as described in figures 11÷14.
FIGURE 21: SERIAL LINE B COMMUNICATION DRIVERS LOCATION
- SERIAL LINE B CONFIGURED IN RS 422 (.RS422 option)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC2</td>
<td>= no component</td>
</tr>
<tr>
<td>IC7</td>
<td>= no component</td>
</tr>
<tr>
<td>IC8</td>
<td>= no component</td>
</tr>
<tr>
<td>IC13</td>
<td>= driver MAX 483 or SN 75176</td>
</tr>
<tr>
<td>IC14</td>
<td>= driver MAX 483 or SN 75176</td>
</tr>
</tbody>
</table>

J6, J7 = (*2) IC7 = no component
J5 = position 2-3 IC8 = no component

IC13 = driver MAX 483 or SN 75176
IC14 = no component

Status of signal /RTSB, which is software managed, allows to enable or disable the transmitter as follows:
/RTSB = low level = logic state 0 -> transmitter enabled
/RTSB = high level = logic state 1 -> transmitter disabled

In point to point connections, signal /RTSB can be always kept low (transmitter always enabled), while in multi point connections transmitter must be enabled only when a transmission is requested.

SERIAL LINE B CONFIGURED IN RS 485 (.RS485 option)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC2</td>
<td>= no component</td>
</tr>
<tr>
<td>IC7</td>
<td>= no component</td>
</tr>
<tr>
<td>IC8</td>
<td>= no component</td>
</tr>
<tr>
<td>IC13</td>
<td>= driver MAX 483 or SN 75176</td>
</tr>
<tr>
<td>IC14</td>
<td>= no component</td>
</tr>
</tbody>
</table>

J6, J7 = (*2) IC7 = no component
J5 = position 1-2 IC8 = no component

IC13 = driver MAX 483 or SN 75176
IC14 = no component

In this modality the signals to use are pins 4 and 5 of connector CN2B, that become transmission or reception lines according to the status of signal /RTSB, managed by software, as follows:
/RTSB = low level = logic state 0 -> transmitter enabled
/RTSB = high level = logic state 1 -> transmitter disabled

This kind of serial communication can be used for multi point connections, in addition it is possible to listen to own transmission, so the user is allowed to verify the success of transmission. In fact, any conflict on the line can be recognized by testing the received character after each transmission.

(*2) If using the RS 422 or RS 485 serial line, it is possible to connect the terminating and forcing circuit on the line by using J6 and J7. This circuit must be always connected in case of point to point connections, while in case of multi point connections it must be connected only in the farthest boards, that is on the edges of the communication line.

When a reset or a power on occasion, signals /RTSA and /RTSB are kept to a logic level high, so in any of these two cases driver RS 485 is receiving or RS 422 transmission is disabled, avoiding eventual conflicts in communication.

For further information please refer to figures 7÷15 or to SCC 85C30 paragraph.
INTERRUPTS

Here is a short description of how the board's hardware interrupt signals can be managed; a more complete description of the hardware interrupts can be found in the manual of GPC® card used.

- SCC 85c30 serial lines -> They generate an /NMI or an /INT interrupt on BUS ABACO®, according to the connection of jumper J1.

Setting the conditions that generate the interrupts is completely software manageable by programming SCC 85c30 registers.
Please remark that UCC A2 structure allows to use more that one card with interrupt activated at the same time but vectored interrupts cannot be used.

CONFIGURATION INPUT

UCC A2 board is provided with one 4 pins dip switch (DSW2), typically used for application configuration, that can be read by software. The most frequent applications are: working condition selection or on board firmware parameters setting, like, for example: language setting, id code inside a serial communication network, communication protocol selection, test modalities selection, configuration mode selection, etc.

The four switches of DSW2 are connected to as many handshake signals of SCC 85c30, according to the following table:

\[
\begin{align*}
\text{DSW2.1} & \quad \rightarrow \quad /\text{DCDA} \\
\text{DSW2.2} & \quad \rightarrow \quad /\text{DCDB} \\
\text{DSW2.3} & \quad \rightarrow \quad /\text{SYNCA} \\
\text{DSW2.4} & \quad \rightarrow \quad /\text{SYNCB}
\end{align*}
\]

Please refer to chapter “PERIPHERAL DEVICES SOFTWARE DESCRIPTIO” for information about how to read them, while to locate them on the board please refer to figures 1 and 5.
ADDRESSES AND MAPS

In this chapter are reported all information about card use, related to hardware and software. For example, the registers addresses and the memory allocation are described below.

BOARD MAPPING

UCC A2 board is mapped into a 4 bytes I/O addressing space, that can be allocated starting from different base addresses according to how the board is configured. This feature allows to use several **UCC A2** cards on the same **BUS ABACO**®, or to install them on a **BUS** where other peripheral modules are installed obtaining a structure that can be expanded without any difficulty or modifications to the application software. These bytes allow the complete control of board settings and status and the complete flow of input and output data.

The base address can be defined through the specific BUS interface circuitry on the board itself; this circuitry uses the eight pins dip switch called **DSW1**, from which it reads the address set by the user. Here follows the correspondence between dips configuration and address signals, to easily locate such component please refer to figure 5.

<table>
<thead>
<tr>
<th>DSW1.1</th>
<th>Address A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSW1.2</td>
<td>Address A3</td>
</tr>
<tr>
<td>DSW1.3</td>
<td>Address A4</td>
</tr>
<tr>
<td>DSW1.4</td>
<td>Address A5</td>
</tr>
<tr>
<td>DSW1.5</td>
<td>Address A6</td>
</tr>
<tr>
<td>DSW1.6</td>
<td>Address A7</td>
</tr>
</tbody>
</table>

These dips are driven in complemented logic, this means that if a switch is **ON** generates a **logic zero**, vice versa if a switch is **OFF** generates a **logic one**.

NOTE

When allocating the mapping address of the boards, please be careful not to allocate more than one device in the same addressing space (count also the number of bytes occupied by the card). If this condition will not be respected, a **BUS** conflict will happen; such conflict will compromise the correct working of the whole system.

As an example, dip configuration to set address 040H is reported here:

<table>
<thead>
<tr>
<th>DSW1.1</th>
<th>-></th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSW1.2</td>
<td>-></td>
<td>ON</td>
</tr>
<tr>
<td>DSW1.3</td>
<td>-></td>
<td>ON</td>
</tr>
<tr>
<td>DSW1.4</td>
<td>-></td>
<td>ON</td>
</tr>
<tr>
<td>DSW1.5</td>
<td>-></td>
<td>OFF</td>
</tr>
<tr>
<td>DSW1.6</td>
<td>-></td>
<td>ON</td>
</tr>
</tbody>
</table>

To locate them on the board please refer to figures 1 and 5.
I/O ADDRESSES

The on board control logic manages the allocation of all the peripheral devices registers in the microprocessor I/O space, that is 256 bytes long. Indication \(<\text{baseaddr}>\) means the base address of the board decided with DSW1, as previously described.

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>REG.</th>
<th>ADDRESS</th>
<th>R/W</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCC 85C30</td>
<td>RSB</td>
<td><baseaddr>+00H</td>
<td>R/W</td>
<td>Serial line B status register.</td>
</tr>
<tr>
<td>SCC 85C30</td>
<td>RDB</td>
<td><baseaddr>+01H</td>
<td>R/W</td>
<td>Serial line B data register.</td>
</tr>
<tr>
<td>SCC 85C30</td>
<td>RSA</td>
<td><baseaddr>+02H</td>
<td>R/W</td>
<td>Serial line A status register.</td>
</tr>
<tr>
<td>SCC 85C30</td>
<td>RDA</td>
<td><baseaddr>+03H</td>
<td>R/W</td>
<td>Serial line A data register.</td>
</tr>
</tbody>
</table>

Figure 22: Internal registers addresses table

Figure 23: Components map (components side above, solder side below)
PERIPHERAL DEVICES SOFTWARE DESCRIPTION

In the previous paragraphs are described the external registers addresses, while in this one there is a specific description of registers meaning and function (please refer to I/O addresses table, for the registers names and addresses values). For a more detailed description of the devices, please refer to manufacturing company documentation. In the following paragraphs the \(D7 \div D0 \) and \(.0 \div .7 \) indications denote the eight bits of a register.

CONFIGURATION INPUT

UCC A2 board is provided with one 4 pins dip switch (DSW2) that can be read by software as described here. The four switches of DSW2 are connected to as many hardware handshake signals of SCC 85c30, and can be acquired by software performing a read operation from status registers of the two sections with the following correspondance:

\[
\begin{align*}
 \text{DSW2.1} & \rightarrow \text{RSA.3} \ (/DCDA) \\
 \text{DSW2.2} & \rightarrow \text{RSB.3} \ (/DCDB) \\
 \text{DSW2.3} & \rightarrow \text{RSA.4} \ (/SYNCA) \\
 \text{DSW2.4} & \rightarrow \text{RSB.4} \ (/SYNCB)
\end{align*}
\]

These dips are driven in complemented logic, this means that if a switch is ON generates a logic zero, viceversa if a switch is OFF generates a logic one. Status registers of SCC 85c30 are described in the following paragraph.

SCC 85C30

This peripheral manages two independent serial lines, called A and B. Communication mode can be:
- Synchronous
- Asynchronous
- SDLC/HDLC

This peripheral is managed through 4 registers allocated in the I/O addressing space. Two of these registers, RS and RSB, are used to set and get the peripheral status (one for each line), while registers RDA and RDB are used for data transfer. Both status and data registers can be accessed in input (to acquire the peripheral status or received data) and in output (to program the peripheral or to data to send). SCC 85C30 uses an indirect addressing mode to its internal registers; this consists in writing proper values to the status register to reach the whole set of internal registers. These latter are 16 writable and 9 readable, and are described in the following pages.
Write register 0 (Command Register)
This register is used for controlling the peripheral, resetting certain of its states and pointing to other internal registers:

\[
\begin{align*}
\text{WR0} &= \text{CRC1} \; \text{CRC0} \; \text{CD2} \; \text{CD1} \; \text{CD0} \; \text{P2} \; \text{P1} \; \text{P0} \\
\text{where:} \\
\text{CRC1} \; \text{CRC0} &= \text{CRC reset codes 0 and 1} \\
0 \; 0 &\rightarrow \text{Null code} \\
0 \; 1 &\rightarrow \text{Reset receive CRC checker} \\
1 \; 0 &\rightarrow \text{Reset transmit CRC generator} \\
1 \; 1 &\rightarrow \text{Reset transmit CRC Underrun/End of transmission latch} \\
\text{CD2} \; \text{CD1} \; \text{CD0} &= \text{Command code selection} \\
0 \; 0 \; 0 &\rightarrow \text{Null code} \\
0 \; 0 \; 1 &\rightarrow \text{Point to high registers WR8÷WR15, RD8÷RD15} \\
0 \; 1 \; 0 &\rightarrow \text{Reset external/status interrupts} \\
0 \; 1 \; 1 &\rightarrow \text{Send Abort in SDLC mode} \\
1 \; 0 \; 0 &\rightarrow \text{Enable interrupt on next received char} \\
1 \; 0 \; 1 &\rightarrow \text{Reset transmission interrupt pending} \\
1 \; 1 \; 0 &\rightarrow \text{Error reset} \\
1 \; 1 \; 1 &\rightarrow \text{Reset highest priority Interrupt Under Service (IUS)} \\
\text{P2} \; \text{P1} \; \text{P0} &= \text{Register selection code, used in conjunction with "Point to high registers" command code (see above)} \\
0 \; 0 \; 0 &\rightarrow \text{WR0, RD0, WR8, RD8} \\
0 \; 0 \; 1 &\rightarrow \text{WR1, RD1, WR9} \\
0 \; 1 \; 0 &\rightarrow \text{WR2, RD2, WR10, RD10} \\
0 \; 1 \; 1 &\rightarrow \text{WR3, RD3, WR11} \\
1 \; 0 \; 0 &\rightarrow \text{WR4, WR12, RD12} \\
1 \; 0 \; 1 &\rightarrow \text{WR5, WR13, RD13} \\
1 \; 1 \; 0 &\rightarrow \text{WR6, WR14} \\
1 \; 1 \; 1 &\rightarrow \text{WR7, WR15, RD15}
\end{align*}
\]

Write register 1 (Interrupt and data transfer mode definition)
Transmit/Receive interrupt and data transfer mode definition; Wait/Ready mode definition:

\[
\begin{align*}
\text{WR1} &= \text{AWR} \; \text{W/R} \; \text{R/T} \; \text{IM1} \; \text{IM0} \; \text{P} \; \text{AIT} \; \text{AIE} \\
\text{where:} \\
\text{AWR} &= \text{Wait/Request pin enable: AWR=0 \rightarrow disabled} \\
\text{W/R} &= \text{Wait/Request function enable: W/R=0 \rightarrow /Wait function} \\
\text{R/T} &= \text{Wait/Request function on receive or transmit: R/T=0 \rightarrow transmit} \\
\text{IM1} \; \text{IM0} &= \text{Receive interrupt modes selection} \\
0 \; 0 &\rightarrow \text{Receive interrupts disabled} \\
0 \; 1 &\rightarrow \text{Receive interrupt on first character or special condition} \\
1 \; 0 &\rightarrow \text{Receive interrupt on all characters or special condition} \\
1 \; 1 &\rightarrow \text{Receive interrupt on first character or special condition} \\
\text{P} &= \text{Enable parity not matching as special condition: P=1 \rightarrow enabled} \\
\text{AIT} &= \text{Enable interrupt when transmit buffer becomes empty: AIT=1 \rightarrow enabled} \\
\text{AIE} &= \text{External/status master interrupt enable: AIE=1 \rightarrow enabled}
\end{align*}
\]
Write register 2 (Interrupt vector)
Only one interrupt vector exists but it can be accessed through either channels:
\[
\begin{align*}
D7 & \quad D6 & \quad D5 & \quad D4 & \quad D3 & \quad D2 & \quad D1 & \quad D0 \\
\text{WR2} & = & V7 & \quad V6 & \quad V5 & \quad V4 & \quad V3 & \quad V2 & \quad V1 & \quad V0
\end{align*}
\]
where:
\[
V_n = \text{Interrupt vector n-th bit}
\]

Write register 3 (Receive parameters and control)
This register contains control bits and parameter for receiver logic:
\[
\begin{align*}
D7 & \quad D6 & \quad D5 & \quad D4 & \quad D3 & \quad D2 & \quad D1 & \quad D0 \\
\text{WR3} & = & R1 & \quad R0 & \quad AA & \quad IF & \quad AR & \quad RI & \quad CS & \quad A
\end{align*}
\]
where:
\[
\begin{align*}
R1 \quad R0 & = \text{Number of bits per character} \\
0 \quad 0 & \rightarrow 5 \text{ bit} \\
0 \quad 1 & \rightarrow 6 \text{ bit} \\
1 \quad 0 & \rightarrow 7 \text{ bit} \\
1 \quad 1 & \rightarrow 8 \text{ bit} \\
AA & = \text{Handshake enables: } AA=1 \rightarrow \text{ enabled} \\
IF & = \text{Enable hunt mode for synchronization: } IF=1 \rightarrow \text{ enabled} \\
AR & = \text{Receiver CRC enable: } AR=1 \rightarrow \text{ enabled} \\
RI & = \text{Enable address search mode for SDLC: } RI=1 \rightarrow \text{ enabled} \\
CS & = \text{SYNC character load inhibit: } CS=1 \rightarrow \text{ inhibited} \\
A & = \text{Receiver enable (set as after all other bits): } A=1 \rightarrow \text{ enabled}
\end{align*}
\]

Write register 4 (Miscellaneous parameters)
Receiver/transmitter miscellaneous parameters and modes:
\[
\begin{align*}
D7 & \quad D6 & \quad D5 & \quad D4 & \quad D3 & \quad D2 & \quad D1 & \quad D0 \\
\text{WR4} & = & VC1 & \quad VC0 & \quad MS1 & \quad MS0 & \quad BS1 & \quad BS0 & \quad P/D & \quad P
\end{align*}
\]
where:
\[
\begin{align*}
VC1 \quad VC0 & = \text{Clock rate 1 and 0} \\
0 \quad 0 & \rightarrow \text{Data rate = clock rate (BITRATE=1)} \\
0 \quad 1 & \rightarrow \text{Data rate = 1/16 fclock rate (BITRATE=16)} \\
1 \quad 0 & \rightarrow \text{Data rate = 1/32 clock rate (BITRATE=32)} \\
1 \quad 1 & \rightarrow \text{Data rate = 1/64 clock rate (BITRATE=64)} \\
MS1 \quad MS0 & = \text{SYNC modes 1 and 0} \\
0 \quad 0 & \rightarrow 6 \text{ or 8 bits character synchronization (see Sync bit in WR10)} \\
0 \quad 1 & \rightarrow 12 \text{ or 16 bits character synchronization (see Sync bit in WR10)} \\
1 \quad 0 & \rightarrow \text{SDLC mode (flag to WR7 is 01111110)} \\
1 \quad 1 & \rightarrow \text{External sync mode} \\
BS1 \quad BS0 & = \text{Stop bits 1 and 0 in asynchronous mode} \\
0 \quad 0 & \rightarrow \text{Synchronous modes selection} \\
0 \quad 1 & \rightarrow 1 \text{ stop bit per character} \\
1 \quad 0 & \rightarrow 1+1/2 \text{ stop bits per character} \\
1 \quad 1 & \rightarrow 2 \text{ stop bits per character} \\
P/D & = \text{Even or odd parity: } P/D=1 \rightarrow \text{ even parity} \\
P & = \text{Parity check enable: } P=1 \rightarrow \text{ enabled}
\end{align*}
\]
Write register 5 (Transmit parameters and control)
This register contains the bits that influence the transmitter behaviour (C/S influences also the receiver):

\[
\begin{array}{cccccccc}
D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\end{array}
\]

WR5 = DTR BC1 BC0 IB AT C/S RTS A

where:

- **DTR** = /DTR pin enable: DTR=1 -> /DTR is active when low
- **BC1 BC0** = Number of bits per character in transmission selection
 - 0 0 -> 5 or less bits
 - 0 1 -> 7 bits
 - 1 0 -> 6 bits
 - 1 1 -> 8 bits
- **IB** = Send break: IB=1 -> send
- **AT** = Transmit enable: AT=1 -> enabled
- **C/S** = Polynomial CRC selection:
 - C/S=1 -> CRC 16 polynomial
 - C/S=0 -> SDLC polynomial
- **RTS** = /RTS pin enable: RTS=1 -> /RTS is active when low
- **A** = Transmit CRC enable: A=1 -> enable

Write register 6 (Sync characters or SDLC address field)
This register contains the Sync character in monosync mode, the first byte of 16-bits sync character in external sync mode or the secondary address field used in SDLC mode:

\[
\begin{array}{cccccccc}
D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\end{array}
\]

WR6 = S7 S6 S5 S4 S3 S2 S1 S0

where:

- **S7 S6 S5 S4 S3 S2 S1 S0**
 - SYNC7 SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS -> Monosync 8 bits
 - SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS -> Monosync 6 bits
 - SYNC7 SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS -> Bisync 16 bits
 - SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS -> Bisync 12 bits
 - ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0 -> SDLC
 - ADR7 ADR6 ADR5 ADR4 X X X X -> SDLC add. range

Write register 7 (SYNC character od SDLC flag)
This register contains the rest of the synchronization informations:

\[
\begin{array}{cccccccc}
D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\end{array}
\]

WR7 = S15 S14 S13 S12 S11 S10 S9 S8

where:

- **S15 S14 S13 S12 S11 S10 S9 S8**
 - SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS -> Monosync 8 bits
 - SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS -> Monosync 6 bits
 - SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS -> Bisync 16 bits
 - SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS SYNCS -> Bisync 12 bits
 - 0 1 1 1 1 1 1 0 -> SDLC
Write register 8 (Transmit buffer)
This is the transmit buffer register:

\[
\begin{array}{cccccccc}
D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\end{array}
\]

\[WR8 = TX7 \ TX6 \ TX5 \ TX4 \ TX3 \ TX2 \ TX1 \ TX0\]

where:

\[TXn = n\text{-th bit of data to transmit}\]

Write register 9 (Master interrupt control)
This register contains the interrupt control bits and allows to reset the USRT channels:

\[
\begin{array}{cccccccc}
D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\end{array}
\]

\[WR9 = R1 \ R0 \ 0 \ SH/L \ MIE \ DLC \ NV \ VIS\]

where:

\[R1 \ R0 = UART\text{ reset command bits}\]

\[0 \ 0 \rightarrow \text{No reset}\]
\[0 \ 1 \rightarrow \text{Channel B reset}\]
\[1 \ 0 \rightarrow \text{Channel A reset}\]
\[1 \ 1 \rightarrow \text{Force hardware reset}\]

\[SH/L = \text{Which vector bits modify to indicate status: } SH/L=1 \rightarrow \text{modify V6\text{"}V4}\]
\[SH/L=0 \rightarrow \text{modify V3\text{"}V1}\]

\[MIE = \text{Master interrupt enable: } MIE=1 \rightarrow \text{interrupts enabled}\]
\[DLC = \text{Disable lower daisy chain: } DLC=1 \rightarrow \text{disabled}\]
\[NV = \text{Disable interrupt vector output: } NV=1 \rightarrow \text{disabled}\]
\[VIS = \text{Interrupt vector includes status bits: } VIS=1 \rightarrow \text{variable vector}\]

Write register 10 (Miscellaneous control bits)
Miscellaneous Transmitter/Receiver control bits:

\[
\begin{array}{cccccccc}
D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\end{array}
\]

\[WR10 = CRC \ FM1 \ FM0 \ GP \ MFI \ AFU \ LM \ S\]

where:

\[CRC = \text{CRC presets: } CRC=1 \rightarrow \text{CRC preset to 1}\]
\[CRC=0 \rightarrow \text{CRC preset to 0}\]

\[FM1 \ FM0 = \text{Data encoding 1 and 2}\]
\[0 \ 0 \rightarrow \text{Modo NRZ}\]
\[0 \ 1 \rightarrow \text{Modo NRZI}\]
\[1 \ 0 \rightarrow \text{Modo FM1 (transition high)}\]
\[1 \ 1 \rightarrow \text{Modo FM0 (transition low)}\]

\[GP = \text{Go active on POLL: } GP=1 \rightarrow \text{enabled}\]

\[MFI = \text{SDLC idle line condition: } MFI=1 \rightarrow \text{send "1s"}\]
\[MFI=0 \rightarrow \text{send flags}\]

\[AFU = \text{Enable SDLC send abort on transmit underrun: } AFU=1 \text{ enabled}\]

\[LM = \text{Enable loop mode: } LM=1 \rightarrow \text{enabled}\]

\[S = \text{Select SYNC char length: } S=1 \rightarrow 6 \text{ bits}\]
\[S=0 \rightarrow 8 \text{ bits}\]
Write register 11 (Clock mode control)
This register allows to select the source of both the receive and transmit clock:

\[WR11 = XT \, RC1 \, RC0 \, TC1 \, TC0 \, TR \, TR1 \, TR0 \]

where:
- XT = clock source on pin /RTxC: XT=1 -> source is quartz crystal
 XT=0 -> source is TTL-compatible signal
- RC1 RC0 = Receiver clock 1 and 0
 0 0 -> Receive clock = pin /RTxC
 0 1 -> Receive Clock = pin /TRxC
 1 0 -> Receive Clock = baud rate generator output
 1 1 -> Receive Clock = DPLL output
- TC1 TC0 = Transmit clock 1 and 0
 0 0 -> Transmit Clock = pin /RTxC
 0 1 -> Transmit Clock = pin /TRxC
 1 0 -> Transmit Clock = baud rate generator output
 1 1 -> Transmit Clock = DPLL output
- TR = Select direction of pin /TRxC: TR=0 -> input
 TR=1 -> output
- TR1 TR0 = /TRxC output source
 0 0 -> XTAL oscillator output
 0 1 -> transmit clock
 1 0 -> baud rate generator output
 1 1 -> DPLL output

Write registers 12 and 13 (Baud rate generator time constant)
These registers contain the baud rate generator time constant:

\[WR12 = TC7 \, TC6 \, TC5 \, TC4 \, TC3 \, TC2 \, TC1 \, TC0 \]
\[WR13 = TC15 \, TC14 \, TC13 \, TC12 \, TC11 \, TC10 \, TC9 \, TC8 \]

The time constant to write in registers 12 and 13 can be calculated using the following formula:

\[TC = (11059200 / (2 \times BITRATE \times BAUDRATE)) - 2 \]

where BAUDRATE is the desired rate in bits per second and BITRATE is the value written in write register 4. Suggested value is 16.

Write register 14 (Miscellaneous control bits)
This register contains miscellaneous control bits:

\[WR14 = C2 \, C1 \, C0 \, LL \, AE \, DTR \, BRS \, BRE \]
where:

- **C2 C1 C0** = Digital phase-locked loop (DPLL) command bits
 - 0 0 0 -> Null command
 - 0 0 1 -> Enter search mode
 - 0 1 0 -> Reset missing clock
 - 0 1 1 -> Disable DPLL
 - 1 0 0 -> Set baud rate generator as clock source
 - 1 0 1 -> Set pin /RTxC as clock source
 - 1 1 0 -> Set FM mode
 - 1 1 1 -> Set NRZI mode

- **LL** = Enable local loopback: LL=1 -> enabled
- **AE** = Enable auto echo: AE=1 -> enabled
- **DTR** = Enable /DTR: DTR=1 -> enabled
- **BRS** = select baud rate generator source:
 - BRS=1 -> pin PCLK
 - BRS=0 -> /RTxC or XTAL
- **BRE** = Enable baud rate generator: BRE=1 -> enable

Write register 15 (External/status interrupt control)
This register selects special interrupt sources:

\[D7 \: D6 \: D5 \: D4 \: D3 \: D2 \: D1 \: D0 \]

\[\text{WR15} = BA \: TU \: CTS \: SU \: DCD \: 0 \: ZC \: 0 \]

where:

- **BA** = Generates interrupt on break/abort
- **TU** = Generates interrupt on transmitter underrun/EOM
- **CTS** = Generates interrupt on /CTS status variation
- **SH** = Generates interrupt on SYNC pin or hunt bit variation
- **DCD** = Generates interrupt on /DCD pin variation
- **0** = Not used (must be zero)
- **ZC** = Generates interrupt when baud rate generator counter reaches 0

The above described states are referred to a logic status "1" of the corresponding bit.

Read register 0 (Buffer and external status)
This register contains bits that report receiver and transmitter buffer status and external status:

\[\text{D7} \: \text{D6} \: \text{D5} \: \text{D4} \: \text{D3} \: \text{D2} \: \text{D1} \: \text{D0} \]

\[\text{RD0} = BA \: TU \: CTS \: SU \: DCD \: TBE \: ZC \: RCA \]

where:

- **BA** = Break/abort occurred: BA=1 -> occurred
- **TU** = Transmission underrun/EOM: TU=1 -> occurred
- **CTS** = pin /CTS status
- **SH** = pin /SYNC or hunt status
- **DCD** = pin /DCD status
- **TBE** = Transmission buffer status: TBE=1 -> empty
- **ZC** = Baud rate generator zero count: ZC=1 -> zero reached
- **RCA** = Receive character available: RCA=1 -> available
Read register 1
This register contains special receive ondition status bits and the residue code for the I-field in SDLC mode:

\[
\begin{align*}
\text{RD1} = & \quad \text{EOF} \quad \text{CRC} \quad \text{ROE} \quad \text{PE} \quad \text{RC0} \quad \text{RC1} \quad \text{RC2} \quad \text{AS} \\
\text{where:} & \\
\text{EOF} &= \text{End of frame (SDLC)} \\
\text{CRC} &= \text{CRC or framing error} \\
\text{ROE} &= \text{Receiver overrun error} \\
\text{PE} &= \text{Receive parity error} \\
\text{RC0} &= \text{SDLC residue code 0} \\
\text{RC1} &= \text{SDLC residue code 1} \\
\text{RC2} &= \text{SDLC residue code 2} \\
\text{AS} &= \text{Everything sent}
\end{align*}
\]

The above described states are referred to a logic status "1" of the corresponding bit.

Read register 2
This register contains the value of the interrupt vector:

\[
\begin{align*}
\text{RD2} = & \quad \text{V7} \quad \text{V6} \quad \text{V5} \quad \text{V4} \quad \text{V3} \quad \text{V2} \quad \text{V1} \quad \text{V0} \\
\text{where:} & \\
\text{Vn} &= \text{n-th bit of the interrupt vector}
\end{align*}
\]

Read register 3
This is the interrupt pending register. It exists only on channel A but contains informations about both the channels. In channel B it always returns zero:

\[
\begin{align*}
\text{RD3} = & \quad 0 \quad 0 \quad \text{CAR} \quad \text{CAT} \quad \text{CAE} \quad \text{CBR} \quad \text{CBT} \quad \text{CBE} \\
\text{where:} & \\
0 &= \text{Not used (always return a zero)} \\
\text{CAR} &= \text{Channel A reception interrupt pending} \\
\text{CAT} &= \text{Channel A transmission interrupt pending} \\
\text{CAE} &= \text{Channel A external/status variation interrupt pending} \\
\text{CBR} &= \text{Channel B reception interrupt pending} \\
\text{CBT} &= \text{Channel B transmission interrupt pending} \\
\text{CBE} &= \text{Channel B external/status variation interrupt pending}
\end{align*}
\]

The above described states are referred to a logic status "1" of the corresponding bit.

Read register 8
This is the receive data register:

\[
\begin{align*}
\text{RD8} = & \quad \text{RX7} \quad \text{RX6} \quad \text{RX5} \quad \text{RX4} \quad \text{RX3} \quad \text{RX2} \quad \text{RX1} \quad \text{RX0} \\
\text{where:} & \\
\text{RXn} &= \text{n-th bit of received data}
\end{align*}
\]
Read register 10
This register contains some miscellaneous status bits:

\[
\begin{align*}
\text{RD10} &= \ 1\text{CM} \ 2\text{CM} \ 0 \ LS \ 0 \ 0 \ OL \ 0 \\
\end{align*}
\]

where:

\[
\begin{align*}
1\text{CM} &= \text{One clock missing} \\
2\text{CM} &= \text{Two clocks missing} \\
0 &= \text{Not used (always return a zero)} \\
LS &= \text{Loop sending} \\
OL &= \text{On loop} \\
\end{align*}
\]

The above described states are referred to a logic status "1" of the corresponding bit.

Read register 12 and 13
These registers return the value stored in WR12 and WR13, that is the time constant for the baud rate generator.

\[
\begin{align*}
\text{RD12} &= \ TC7 \ TC6 \ TC5 \ TC4 \ TC3 \ TC2 \ TC1 \ TC0 \\
\text{RD13} &= \ TC15 \ TC14 \ TC13 \ TC12 \ TC11 \ TC10 \ TC9 \ TC8 \\
\end{align*}
\]

Read register 15
This register reflects the value stored in write register 15, the external/staus interrupt enable bits. For the meanings of such bits please refer to the description of write register 15. The two unused bits always return zero.

\[
\begin{align*}
\text{RD15} &= \ BA \ TU \ CTS \ SU \ DCD \ 0 \ ZC \ 0 \\
\end{align*}
\]

After a reset or a power on SCC 85C30 disables both the serial lines, just like their hardware sigals.
Figure 24: Available Connections Diagram

- **All Type CPU**
 - GPC® 150
 - GPC® 15A
 - GPC® 188F
 - GPC® 51

- **Any Motherboard Type with Abaco® Bus**

- **Power Supply**
 - +5Vdc only (SPC 03.5S or SPC 512)

- **Board Configuration**
- **User Inputs**
- **Activity and Status LEDs**

- **2 Hardware Serial Lines**
 - RS-232, RS 422, RS 485 or Current Loop

- **PC like or Macintosh**
- **PLC**
- **QTP Terminals**
BIBLIOGRAPHY

In this chapter there is a complete list of technical books, where the user can find all the necessary documentations on the components mounted on UCC A2.

Manual TEXAS INSTRUMENTS: The TTL Data Book - SN54/74 Families
Manual TEXAS INSTRUMENTS: RS-422 and RS-485 Interface Circuits
Manual HEWLETT PACKARD: Optoelectronics Designer’s Catalog
Manual MAXIM: New Releases Data Book - Volume IV
Manual ZILOG: Z8530 SCC Serial Communication Controller

For further information and upgrades please refer to specific internet web pages of the manufacturing companies.
APPENDIX A: ALPHABETICAL INDEX

A
ABACO® 4, 8

B
BIBLIOGRAPHY 38
BUS 4, 8

C
CARD VERSION 1
CONFIGURATION 25, 28
CONNECTIONS 6
CONNECTORS 4
 CN1 8
 CN2A 10
 CN2B 12
CONSUMPTION 5
CTS 10, 12
CURRENT LOOP 11, 13, 14, 18, 20, 22

D
DIP SWITCH 25, 26
DSW1 26
DSW2 25, 28

F
FREQUENCY 4

I
INT 25
INTERRUPTS 25

J
JUMPERS 17
 2 PINS JUMPERS 17
 3 PINS JUMPERS 18

L
LEDS 6
M
MAPPING 26

N
NMI 25

P
POWER SUPPLY 5

R
RELATIVE HUMIDITY 4
RS 232 10, 12, 20, 22
RS 422 10, 12, 17, 20, 24
RS 485 11, 13, 17, 22, 24
RS 485 NETWORK 16
RTS 6, 10, 12
RX 6, 10, 12

S
SCC 85C30 4, 25, 27, 28
SIZE 4
SOLDER JUMPERS 18

T
TEMPERATURE RANGE 4
TTL 18
TX 6, 10, 12

U
UART 4

V
VISUAL SIGNALATIONS 6

W
WEIGHT 4