PCI 01
Peripheral Coupled Input; 32 Opto Input

TECHNICAL MANUAL
Peripheral card in Eurocard format size 100x160 mm; interface to **ABACO®** Industrial BUS; 32 optocoupled NPN digital input lines; RC filter on all the inputs; visualization through LED of the logic status of each input line; two 20 pins input connectors Standard **ABACO®**; I/O mapping space selection through on board dip switch; I/O room taken as low as 4 Byte; data BUS width selectable between 8 or 16 bits through jumper; 2 LEDs to visualize BUS interface configuration; 2 standard input connectors; interfacement to the external world through **FBC 20; FBC L22;** etc.; unique power supply 5 Vdc; optocoupled section power supply: +24 Vdc
IMPORTANT

Although all the information contained herein have been carefully verified, grifo® assumes no responsibility for errors that might appear in this document, or for damage to things or persons resulting from technical errors, omission and improper use of this manual and of the related software and hardware.

grifo® reserves the right to change the contents and form of this document, as well as the features and specification of its products at any time, without prior notice, to obtain always the best product.

For specific informations on the components mounted on the card, please refer to the Data Book of the builder or second sources.

SYMBOLS DESCRIPTION

In the manual could appear the following symbols:

- Attention: Generic danger
- Attention: High voltage

Trade Marks

GPC®, grifo®: are trade marks of grifo®.

Other Product and Company names listed, are trade marks of their respective companies.
GENERAL INDEX

INTRODUCTION ... 1
CARD VERSION ... 1

GENERAL INFORMATION ... 2
 INTERFACING AND ADDRESSING .. 4
 CONTROL LOGIC ... 4
 INPUT ... 4

TECHNICAL FEATURES .. 6
 GENERAL FEATURES ... 6
 ELECTRIC FEATURES .. 6
 PHYSICAL FEATURES .. 6

INSTALLATION ... 8
 CONNECTIONS .. 8
 K2 - OPTOCOUPLED INPUT SECTIONS A AND B CONNECTOR 8
 K3 - OPTOCOUPLED INPUT SECTIONS C AND D CONNECTOR 10
 K1 - CONNECTOR FOR ABACO® BUS ... 12
 VISUAL SIGNALATIONS ... 14
 POWER SUPPLY ... 14
 JUMPER ... 15
 BOARD CONNECTIONS ... 15

HARDWARE DESCRIPTION ... 16
 BOARD MAPPING ... 16
 INTERNAL REGISTERS ADDRESSING .. 18
 INTERNAL REGISTERS ADDRESSING FOR 8 BIT ADDRESSING MODE 18
 INTERNAL REGISTERS ADDRESSING FOR 16 BIT ADDRESSING MODE 18

PERIPHERAL DEVICES SOFTWARE DESCRIPTION ... 19
 OPTOCOUPLED INPUTS ... 19

EXTERNAL CARDS ... 21

BIBLIOGRAPHY ... 26

APPENDIX A: ALPHABETICAL INDEX .. A-1
FIGURES INDEX

FIGURE 1: BLOCK DIAGRAM ... 3
FIGURE 2: COMPONENTS MAP .. 5
FIGURE 3: CARD PHOTO ... 7
FIGURE 4: K2 - OPTOCOUPLED INPUTS SECTIONS A AND B CONNECTOR ... 8
FIGURE 5: OPTOCOUPLED INPUTS BLOCK DIAGRAM .. 9
FIGURE 6: K3 - OPTOCOUPLED INPUTS SECTIONS C AND D CONNECTOR 10
FIGURE 7: DIP SWITCH, LEDs, CONNECTORS LOCATION ... 11
FIGURE 8: K1 - CONNECTOR FOR ABACO® BUS ... 12
FIGURE 9: VISUAL SIGNALATIONS TABLE ... 14
FIGURE 10: JUMPER SUMMARIZING TABLE ... 15
FIGURE 11: INTERNAL REGISTERS ADDRESSING TABLE FOR 8 BIT ADDRESSING MODE 18
FIGURE 12: INTERNAL REGISTERS ADDRESSING TABLE FOR 16 BIT ADDRESSING MODE 18
FIGURE 13: POSSIBLE CONNECTIONS DIAGRAM ... 23
INTRODUCTION

The use of these devices has turned - IN EXCLUSIVE WAY - to specialized personnel.

The purpose of this handbook is to give the necessary information to the cognizant and sure use of the products. They are the result of a continual and systematic elaboration of data and technical tests saved and validated from the manufacturer, related to the inside modes of certainty and quality of the information.

The reported data are destined- IN EXCLUSIVE WAY- to specialized users, that can interact with the devices in safety conditions for the persons, for the machine and for the enviroment, impersonating an elementary diagnostic of breakdowns and of malfunction conditions by performing simple functional verify operations , in the height respect of the actual safety and health norms.

The informations for the installation, the assemblage, the dismantlement, the handling, the adjustment, the reparation and the contingent accessories, devices etc. installation are destined - and then executable - always and in exclusive way from specialized warned and educated personnel, or directly from the TECHNICAL AUTHORIZED ASSISTANCE, in the height respect of the manufacturer recommendations and the actual safety and health norms.

The devices can't be used outside a box. The user must always insert the cards in a container that respect the actual safety normative. The protection of this container is not threshold to the only atmospheric agents, but specially to mechanic, electric, magnetic, etc. ones.

To be on good terms with the products, is necessary guarantee legibility and conservation of the manual, also for future references. In case of deterioration or more easily for technical updates, consult the AUTHORIZED TECHNICAL ASSISTANCE directly.

To prevent problems during card utilization, it is a good practice to read carefully all the informations of this manual. After this reading, the user can use the general index and the alphabetical index, respectly at the begining and at the end of the manual, to find information in a faster and more easy way.

CARD VERSION

The present manual is reported to the PCI 01 version 060688.
The validity of the bring informations is subordinate to the number of the card release. The user must always verify the correct correspondence among the two denotations. Version number is printed on the boards in several positions both in serigraph and in printed circuit (for example near the bottom right corner on the solder side).
PCI 01 (Peripheral Coupled Input; 32 Optocoupled NPN Input) board is a very powerful digital input module capable to acquire 32 input lines. This extreme compactness marks all grifo® boards and allows to optimize room and final cost of the applications.

Each input is optocoupled so that to warrant the galvanic separation between the external world and the on board electronic. In addition, each input has its own π-filter, to limit the bandwidth, and a signalation LED of the logic status on the line.

PCI 01 is connected to the external world through two standard ABACO® I/O connectors. This allows a perfect data interchange amongst I/O peripherals available in ABACO® listing. To ease the operations of cable mounting and connection of wires from the external world, a set of modules capable of mounting on DIN rack has been created; these modules belong to FBC xxx family. In detail these modules allow to unravel the wires coming from the external Flat-Cables making them available on comfortable quick release screw terminal connectors. There are also FBC designed specifically to connect galvanically isolated inputs like FBC 20, FBC 120, FBC L20, FBC L22, etc.; theses latter two modules are also provided with LEDs to visualize the logic status of each input line.

PCI 01 peripheral board can work both matching with 8 bit CPU’s and 16 bit CPU’s, taking only 4 bytes in the I/O addressing space. The choice between the 8 or 16 bit BUS interface is made by a specific Dip-switch. The condition set is visualized through two specific LEDs located near the selection Dip-switch.

- Peripheral card in Eurocard format size 100x160 mm
- Interface to ABACO® Industrial BUS
- 32 optocoupled NPN input lines with π-filter on each input
- Visualization through LED of the logic status of each input line
- Two 20 pins input connectors Standard ABACO®
- Connection to the external world through FBC 20, FBC L22, etc.
- BUS data width selectable between 8 or 16 bits through jumper
- I/O mapping through dip switch, in 256 Byte mapping space
- I/O room taken as low as 4 Byte
- Unique power supply +5 Vdc
- Optocoupled section power supply: +24 Vdc
FIGURE 1: BLOCK DIAGRAM

K1 - ABACO® BUS

INTERFACE AND ADDRESSING SECTION

8 or 16 bit Data BUS

DIP1

CONTROL LOGIC

INPUT LINES

OPTO-COUPLERS

π FILTERS

16 NPN input lines

K3

OPTO-COUPLERS

π FILTERS

16 NPN input lines

K2
Here follows a description of **PCI 01** board's functional blocks, with an indication of the operations performed by each one. To easily locate these blocks and verify their connections please refer to figure 1.

INTERFACING AND ADDRESSING

This section manages the data exchange between control logic and command board through **ABACO® BUS**. In particular, all read data transit across this section that, in addition, provides the board I/O management, by setting the dip switch **DIP1**. Please remark that this section can be configured to make **PCI 01** addressable in a physical space of 256 bytes. **ABACO®** industrial BUS supports both 8 bits and 16 bits addressing mode. For further information please refer to the chapter dedicated to board's software description.

CONTROL LOGIC

This section generates all the chip select signals needed to access the several peripherals on **PCI 01** boards. Using this section the programmer can interact to the board's several sections, verifying their status, reading digital input configurations, etc. All this can be done through a simple software management based on **ABACO® BUS**, to which the control logic connects through the interfacing and addressing section. For further information please refer to the chapter dedicated to board's software description.

INPUT

PCI 01 board features two input sections with 16 input signals each, acquired through input buffers. These components are managed by specific read registers, according to the information contained in the chapters dedicated to board's hardware and software description. Any input signal is galvanically isolated, NPN type and visualized through its own LED. Optocouplers of this section are supplied through +24 Vdc voltage that must be provided by means of a specific connector. All the input signals are protected by a π-filter, that warrants a high immunity against the disturbances from the external world.
FIGURE 2: COMPONENTS MAP
TECHNICAL FEATURES

GENERAL FEATURES

On board resources: 32 optocoupled NPN digital inputs
1 dip switch with 8 pins to set the I/O address

BUS type: ABACO® Industrial
8 or 16 bits data and addresses

N. addressable bytes: 256 bytes

N. bytes / words occupied: 4 / 2

ELECTRIC FEATURES

Power supply: +5 Vdc ± 5% (logic circuits)
+ 24 Vdc (Vopto: optoicoupled inputs)

Current consumption: 255 mA (+5 Vdc)
260 mA (+24 Vdc)

Filter on NPN inputs: π-filter

Minimum current on NPN inputs: 400 µA

PHYSICAL FEATURES

Size: Standard EUROCARD format 100x160 mm

Weight: 156 g

Connectors: K1: DIN 41612 64 pins M 90° A+C type C
K2: Low profile 20 pins M 90° strain relief clamp
K3: Low profile 20 pins M 90° strain relief clamp

Temperature range: from 0 to 70 centigrade degrees

Relative humidity: 20% up to 90% (without condensing)
FIGURE 3: CARD PHOTO
INSTALLATION

In this chapter there are the information for a right installation and correct use of PCI 01 card. The user can find the location and functions of each connectors, jumpers, dip switch and some explanatory diagrams.

CONNECTIONS

The PCI 01 card has 3 connectors that can be linkeded to other devices or directly to the field, according to system requirements. In this paragraph there are connectors pin outs, a short signals description (including the signals direction) and connectors location (please see figure 7), plus some figures that describe how the interface signals are connected on the card.

K2 - OPTOCOUPLED INPUT SECTIONS A AND B CONNECTOR

The connector for optocoupled NPN inputs of sections A and B, called K2, is a low profile, 2.54 mm pitch, male, 90°, 20 pins connector with strain relief clamp. The connector features 16 out of 32 inputs of PCI 01 and the lines to supply the optocouplers.

![Figure 4: K2 - Optocoupled Inputs Sections A and B Connector](image)

Figure 4: K2 - Optocoupled Inputs Sections A and B Connector

Signals description:

- **INA.n** = I - n-th optocoupled NPN input of section A.
- **INB.n** = I - n-th optocoupled NPN input of section B.
- **+24 Vdc (opto)** = I - Optocouplers power supply.
- **GND opto** = I - Common terminal of optocouplers power supply.
The NPN input signals available on PCI 01 are optocoupled and provided with \(\pi \)-filter to warrant a high degree of protection against noise and disturb from the external world. Each signal is provided with a LED for visual feedback (the LED will light whenever the input will have the potential of GND opto signal); this means that the inputs are going to support normally open contacts. These contacts are suitable to be connected to NPN drivers. In case the User would want to connect PNP drivers then he/she will have to put a PBI 01 BLOCK module between the drivers and the card.

The interface circuitry for the 32 lines of the input section is shown in the following diagram. The supply voltage of the optocouplers must be in the range \(+24 \text{ Vdc} \) and must be provided through the specific pins of K2 or K3.

Figure 5: Optocoupled Inputs Block Diagram

K3 - OPTOCOUPLLED INPUT SECTIONS C AND D CONNECTOR

The connector for optocoupled NPN inputs of sections C and D, called K3, is a low profile, 2.54 mm pitch, male, 90°, 20 pins connector with strain relief clamp.
The connector features 16 out of 32 inputs of PCI 01 and the lines to supply the optocouplers.

FIGURE 6: K3 - OPTOCOUPLLED INPUTS SECTIONS C AND D CONNECTOR

Signals description:

- **INC.n** = I - n-th optocoupled NPN input of section C.
- **IND.n** = I - n-th optocoupled NPN input of section D.
- **+24 Vdc (opto)** = I - Optocouplers power supply.
- **GND opto** = - Common terminal of optocouplers power supply.
Figure 7: DIP Switch, LEDs, Connectors Location
K1 - CONNECTOR FOR ABACO® BUS

The connector for ABACO® BUS, called K1 on the board, is a DIN 41612, male, 90°, type C, A+C. Here follows the pin-out of the connector installed on PCI 01, in addition there is the standard 8 bits and 16 bits ABACO® BUS pin-out. Please remark that all the signals here described are TTL, except for the power supplies.

<table>
<thead>
<tr>
<th>A 16 bit BUS</th>
<th>A 8 bit BUS</th>
<th>A PCI 01</th>
<th>PIN</th>
<th>C PCI 01</th>
<th>C 8 bit BUS</th>
<th>C 16 bit BUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>1</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
<td>2</td>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
</tr>
<tr>
<td>D0</td>
<td>D0</td>
<td>D0</td>
<td>3</td>
<td>D8</td>
<td>D8</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>D1</td>
<td>4</td>
<td>D9</td>
<td>D9</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>D2</td>
<td>D2</td>
<td>5</td>
<td>D10</td>
<td>D10</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>D3</td>
<td>D3</td>
<td>6</td>
<td>N.C.</td>
<td>/INT</td>
<td>/INT</td>
</tr>
<tr>
<td>D4</td>
<td>D4</td>
<td>D4</td>
<td>7</td>
<td>N.C.</td>
<td>/NMI</td>
<td>/NMI</td>
</tr>
<tr>
<td>D5</td>
<td>D5</td>
<td>D5</td>
<td>8</td>
<td>D11</td>
<td>/HALT</td>
<td>D11</td>
</tr>
<tr>
<td>D6</td>
<td>D6</td>
<td>D6</td>
<td>9</td>
<td>N.C.</td>
<td>/MREQ</td>
<td>/MREQ</td>
</tr>
<tr>
<td>D7</td>
<td>D7</td>
<td>D7</td>
<td>10</td>
<td>/IORQ</td>
<td>/IORQ</td>
<td>/IORQ</td>
</tr>
<tr>
<td>A0</td>
<td>A0</td>
<td>A0</td>
<td>11</td>
<td>/RD</td>
<td>RD</td>
<td>/RDLDS</td>
</tr>
<tr>
<td>A1</td>
<td>A1</td>
<td>A1</td>
<td>12</td>
<td>N.C.</td>
<td>/WR</td>
<td>/WRLDS</td>
</tr>
<tr>
<td>A2</td>
<td>A2</td>
<td>A2</td>
<td>13</td>
<td>D12</td>
<td>/BUSAK</td>
<td>D12</td>
</tr>
<tr>
<td>A3</td>
<td>A3</td>
<td>A3</td>
<td>14</td>
<td>N.C.</td>
<td>/WAIT</td>
<td>/WAIT</td>
</tr>
<tr>
<td>A4</td>
<td>A4</td>
<td>A4</td>
<td>15</td>
<td>D13</td>
<td>/BUSRQ</td>
<td>D13</td>
</tr>
<tr>
<td>A5</td>
<td>A5</td>
<td>A5</td>
<td>16</td>
<td>N.C.</td>
<td>/RESET</td>
<td>/RESET</td>
</tr>
<tr>
<td>A6</td>
<td>A6</td>
<td>A6</td>
<td>17</td>
<td>/M1</td>
<td>/M1</td>
<td>/IACK</td>
</tr>
<tr>
<td>A7</td>
<td>A7</td>
<td>A7</td>
<td>18</td>
<td>D14</td>
<td>/RFSH</td>
<td>D14</td>
</tr>
<tr>
<td>A8</td>
<td>A8</td>
<td>N.C.</td>
<td>19</td>
<td>N.C.</td>
<td>/MEMDIS</td>
<td>/MEMDIS</td>
</tr>
<tr>
<td>A9</td>
<td>A9</td>
<td>N.C.</td>
<td>20</td>
<td>N.C.</td>
<td>VDUSEL</td>
<td>A22</td>
</tr>
<tr>
<td>A10</td>
<td>A10</td>
<td>N.C.</td>
<td>21</td>
<td>N.C.</td>
<td>/IEI</td>
<td>D15</td>
</tr>
<tr>
<td>A11</td>
<td>A11</td>
<td>N.C.</td>
<td>22</td>
<td>N.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>A12</td>
<td>N.C.</td>
<td>23</td>
<td>N.C.</td>
<td>CLK</td>
<td>CLK</td>
</tr>
<tr>
<td>A13</td>
<td>A13</td>
<td>N.C.</td>
<td>24</td>
<td>/RDUDS</td>
<td>/RDUDS</td>
<td></td>
</tr>
<tr>
<td>A14</td>
<td>A14</td>
<td>N.C.</td>
<td>25</td>
<td>N.C.</td>
<td>/WRUDS</td>
<td></td>
</tr>
<tr>
<td>A15</td>
<td>A15</td>
<td>N.C.</td>
<td>26</td>
<td>N.C.</td>
<td>A21</td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>N.C.</td>
<td>27</td>
<td>N.C.</td>
<td>A20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A17</td>
<td>N.C.</td>
<td>28</td>
<td>N.C.</td>
<td>A19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A18</td>
<td>N.C.</td>
<td>29</td>
<td>N.C.</td>
<td>/R.T.</td>
<td>/R.T.</td>
<td></td>
</tr>
<tr>
<td>+12 Vdc</td>
<td>+12 Vdc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>32</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>

Figure 8: K1 - Connector for ABACO® BUS
Signals description:

8 bits CPU

A0-A15 = O - Address BUS
D0-D7 = I/O - Data BUS
/INT = I - Interrupt request
/NMI = I - Non Maskable Interrupt
/HALT = O - Halt state
/MREQ = O - Memory Request
/IORQ = O - Input Output Request
/RD = O - Read cycle status
/WR = O - Write cycle status
/BUSAK = O - BUS Acknowledge
/WAIT = I - Wait
/BUSRQ = I - BUS Request
/RESET = O - Reset
/M1 = O - Machine cycle one
/RFSH = O - Refresh for dynamic RAM
/MEMDIS = I - Memory Display
/VDUSEL = O - VDU Selection
/IEI = I - Interrupt Enable Input
/CLK = O - System clock
/R.T. = I - Reset button
/+5 Vdc = I - Power supply at +5 Vdc
/+12 Vdc = I - Power supply at +12 Vdc
/-12 Vdc = I - Power supply at -12 Vdc
/GND = - Ground signal
/N. C. = - Not connected

16 bits CPU

A0-A22 = O - Address BUS
D0-D15 = I/O - Data BUS
/RD UDS = O - Read Upper Data Strobe
/WR UDS = O - Write Upper Data Strobe
/IACK = O - Interrupt Acknowledge
/RD LDS = O - Read Lower Data Strobe
/WR LDS = O - Write Lower Data Strobe

NOTE
Directionality indications as above stated are referred to a master (GPC®) board and have been kept untouched to avoid ambiguity in case of multi-boards systems.
VISUAL SIGNALATIONS

PCI 01 card is provided with signalation LEDs to show several status informations, as described in the following table:

<table>
<thead>
<tr>
<th>LED</th>
<th>COLOUR</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L33</td>
<td>Red</td>
<td>If ON, indicates 16 bits data BUS selection.</td>
</tr>
<tr>
<td>L34</td>
<td>Yellow</td>
<td>If ON, indicates 8 bits data BUS selection.</td>
</tr>
<tr>
<td>LA0÷LA7</td>
<td>Green</td>
<td>Visualize the status of the eight section A NPN optocoupled input lines, respectively INA.0÷INA.7. A LED ON means input contact closed.</td>
</tr>
<tr>
<td>LB0÷LB7</td>
<td>Yellow</td>
<td>Visualize the status of the eight section B NPN optocoupled input lines, respectively INB.0÷INB.7. A LED ON means input contact closed.</td>
</tr>
<tr>
<td>LC0÷LC7</td>
<td>Green</td>
<td>Visualize the status of the eight section C NPN optocoupled input lines, respectively INC.0÷INC.7. A LED ON means input contact closed.</td>
</tr>
<tr>
<td>LD0÷LD7</td>
<td>Yellow</td>
<td>Visualize the status of the eight section D NPN optocoupled input lines, respectively IND.0÷IND.7. A LED ON means input contact closed.</td>
</tr>
</tbody>
</table>

Figure 9: Visual signalations table

The main purpose of LEDs is to show a visual indication about the card's status, making so easier debug and verify operations. To easily locate these visual signalations please refer to the figure 7.

POWER SUPPLY

PCI 01 is provided with an efficient circuitery that solves in a comfortable and simple way the problem of the board's supply, under any condition of use.

Here follow the voltages needed:

+24 Vdc: Supplies the optocouplers of the input section (Vopto); must be about 24 Vdc and must be provided through pins 17-18 and pins 19-20 of K2 or K3.

+5 Vdc: Supplies the on board logic; must be in the range +5 Vdc ± 5% and must be provided through the specific pins of connector K1 (ABACO® BUS).

To warrant great immunity to external noise and so a correct working of the board, it is essential that +24 Vdc and +5 Vdc tension are galvanically isolated each other and from any other supply in the system.
JUMPER

On PCI 01 board there is one two pins jumper to configure the card BUS data width between 8 or 16 bits.
The table describes the right connection of the jumper with relative functions. For recognizing jumper location, please refer to the figure 7.
The "*" used in the following tables, denotes the default connection, or on the other hand the connection set up at the end of testing phase, that is the configuration the user receives.

<table>
<thead>
<tr>
<th>JUMPER</th>
<th>CONNECTIONS</th>
<th>PURPOSE</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIP1.1</td>
<td>OFF</td>
<td>Configures the board to be managed through a 16 bits data BUS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>Configures the board to be managed through an 8 bits data BUS.</td>
<td>*</td>
</tr>
</tbody>
</table>

FIGURE 10: JUMPER SUMMARIZING TABLE

BOARD CONNECTIONS

To prevent possible connecting problems between PCI 01 board and the external systems, the User has to read carefully the information of the previous paragraphs and he must follow these instructions:

- To connect to the optocoupled input signals, only the contacts to acquire must be connected from the external system(s). These contacts (relays, switches, etc.) must connect or not connect the input signal INx.y to GND opto. About the correspondance between logic signals and contact status, an open contact generates a logic 1, a closed contact generates a logic 0, following the NPN standard.

- The TTL output signals can be connected directly only to a device featuring the same type of interface. About the correspondance between logic signals and TTL output status, remember that a logic 0 generates a TTL 0 Vdc, while a logic 1 generates a TTL +5 Vdc.

HARDWARE DESCRIPTION

This chapter provides all the hardware information needed to use PCI 01 board. Here the user will find information about I/O card mapping and on board peripheral devices addressing.

BOARD MAPPING

PCI 01 board is mapped into a 4 bytes I/O addressing space (or two words in 16 bits addressing mode), that can be mapped starting from different base addresses according to how the board is configured. This feature allows to use several PCI 01 cards on the same ABACO® BUS, or to install them on a BUS where other peripheral modules are installed obtaining a structure that can be expanded without any difficulty or modifications to the application software.

The base address can be defined through the specific BUS interface circuitry on the board itself; this circuitry uses the eight pins dip switch called DIP1, from which it reads the address set by the user. Here follows the correspondence between dips configuration and address signals.

<table>
<thead>
<tr>
<th>Dip</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIP1.1</td>
<td>Please see paragraph "JUMPERS"</td>
</tr>
<tr>
<td>DIP1.2</td>
<td>Don't care</td>
</tr>
<tr>
<td></td>
<td>8 bits BUS data path (DIP1.1 ON)</td>
</tr>
<tr>
<td></td>
<td>16 bits BUS data path (DIP1.1 OFF)</td>
</tr>
<tr>
<td>DIP1.3</td>
<td>Address A2</td>
</tr>
<tr>
<td>DIP1.4</td>
<td>Address A3</td>
</tr>
<tr>
<td>DIP1.5</td>
<td>Address A4</td>
</tr>
<tr>
<td>DIP1.6</td>
<td>Address A5</td>
</tr>
<tr>
<td>DIP1.7</td>
<td>Address A6</td>
</tr>
<tr>
<td>DIP1.8</td>
<td>Address A7</td>
</tr>
</tbody>
</table>

These dips are driven in complemented logic, this means that if a switch is ON generates a logic zero, vice versa if a switch is OFF generates a logic one.

When the board is configured for 16 bits data BUS management, DIP1.2 must be ON, so the board can be mapped only from addresses where A1=0.

NOTE

When allocating the mapping address of the boards, please be careful not to allocate more than one device in the same addressing space (count also the number of bytes occupied by the card). If this condition will not be respected, a BUS conflict will happen; such conflict will compromise the correct working of the whole system.
As an example, possible mappings are reported here.

1) Address used to map **PCI 01**: 048H.
 Control board used: featuring 8 bits addressing mode.

<table>
<thead>
<tr>
<th>DIP</th>
<th>-></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>-></td>
<td>ON</td>
</tr>
<tr>
<td>1.2</td>
<td>-></td>
<td>Don't care</td>
</tr>
<tr>
<td>1.3</td>
<td>-></td>
<td>ON</td>
</tr>
<tr>
<td>1.4</td>
<td>-></td>
<td>OFF</td>
</tr>
<tr>
<td>1.5</td>
<td>-></td>
<td>ON</td>
</tr>
<tr>
<td>1.6</td>
<td>-></td>
<td>ON</td>
</tr>
<tr>
<td>1.7</td>
<td>-></td>
<td>OFF</td>
</tr>
<tr>
<td>1.8</td>
<td>-></td>
<td>ON</td>
</tr>
</tbody>
</table>

2) Address used to map **PCI 01**: A4H.
 Control board used: featuring 8 bits addressing mode.

<table>
<thead>
<tr>
<th>DIP</th>
<th>-></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>-></td>
<td>OFF</td>
</tr>
<tr>
<td>1.2</td>
<td>-></td>
<td>ON</td>
</tr>
<tr>
<td>1.3</td>
<td>-></td>
<td>OFF</td>
</tr>
<tr>
<td>1.4</td>
<td>-></td>
<td>ON</td>
</tr>
<tr>
<td>1.5</td>
<td>-></td>
<td>ON</td>
</tr>
<tr>
<td>1.6</td>
<td>-></td>
<td>OFF</td>
</tr>
<tr>
<td>1.7</td>
<td>-></td>
<td>ON</td>
</tr>
<tr>
<td>1.8</td>
<td>-></td>
<td>OFF</td>
</tr>
</tbody>
</table>

To easily locate the above mentioned components please refer to figure 7.
INTERNAL REGISTERS ADDRESSING

Indicating the board base address with \(<\text{baseaddr}>\), that is the address set using dip switch DIP1, as indicated in the previous paragraph, PCI 01 internal registers are addressable as explained in the following tables, respectively when addressing mode is 8 bit and 16 bit.

NOTE

If using several boards on the same ABACO® BUS, when setting the boards mapping address the User should be careful not to allocate more than one board in the same addressing space (consider the base address plus the bytes taken by the board addressing). If this condition is not satisfied a BUS conflict situation will occur, prejudicing the correct working of the whole system.

INTERNAL REGISTERS ADDRESSING FOR 8 BIT ADDRESSING MODE

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>REG.</th>
<th>ADDRESS</th>
<th>R/W</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT A</td>
<td>INA</td>
<td>(<\text{baseaddr}>+00H)</td>
<td>R</td>
<td>Register to acquire the 8 optocoupled NPN input lines of section A.</td>
</tr>
<tr>
<td>INPUT B</td>
<td>INB</td>
<td>(<\text{baseaddr}>+01H)</td>
<td>R</td>
<td>Register to acquire the 8 optocoupled NPN input lines of section B.</td>
</tr>
<tr>
<td>INPUT C</td>
<td>INC</td>
<td>(<\text{baseaddr}>+02H)</td>
<td>R</td>
<td>Register to acquire the 8 optocoupled NPN input lines of section C.</td>
</tr>
<tr>
<td>INPUT D</td>
<td>IND</td>
<td>(<\text{baseaddr}>+03H)</td>
<td>R</td>
<td>Register to acquire the 8 optocoupled NPN input lines of section D.</td>
</tr>
</tbody>
</table>

Figure 11: Internal registers addressing table for 8 bit addressing mode

INTERNAL REGISTERS ADDRESSING FOR 16 BIT ADDRESSING MODE

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>REG.</th>
<th>ADDRESS</th>
<th>R/W</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT C, A</td>
<td>INCA</td>
<td>(<\text{baseaddr}>+00H)</td>
<td>R</td>
<td>Register to acquire the 16 optocoupled NPN input lines of section C (byte H) and section A (byte L).</td>
</tr>
<tr>
<td>INPUT D, B</td>
<td>INDB</td>
<td>(<\text{baseaddr}>+02H)</td>
<td>R</td>
<td>Register to acquire the 16 optocoupled NPN input lines of section D (byte H) and section B (byte L).</td>
</tr>
</tbody>
</table>

Figure 12: Internal registers addressing table for 16 bit addressing mode
PERIPHERAL DEVICES SOFTWARE DESCRIPTION

In the previous paragraph allocation addresses of all the peripherals have been reported, here follows a detailed description of function and meaning of internal registers (please always refer to the peripheral mapping tables to understand completely the following informations). Should the present documentation be inadequate please refer to the component's manufacturer documentation.

In the following paragraphs the indications $D_0 \div D_7$ or $D_0 \div D_{15}$ are used to refer the bits of the byte or word involved in the I/O operations.

OPTOCOUPLED INPUTS

Input registers (called INA, INB, INC and IND when using an 8 bit data BUS or INCA and INDB when using an 16 bit data BUS) perform the input management on PCI 01 board. The bits of these registers have the following meaning:

<table>
<thead>
<tr>
<th>8 bits data BUS</th>
<th>16 bits data BUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INC.D7 -> INC.7</td>
<td>INCA.D15 -> INC.7</td>
</tr>
<tr>
<td>INC.D6 -> INC.6</td>
<td>INCA.D14 -> INC.6</td>
</tr>
<tr>
<td>INC.D5 -> INC.5</td>
<td>INCA.D13 -> INC.5</td>
</tr>
<tr>
<td>INC.D4 -> INC.4</td>
<td>INCA.D12 -> INC.4</td>
</tr>
<tr>
<td>INC.D3 -> INC.3</td>
<td>INCA.D11 -> INC.3</td>
</tr>
<tr>
<td>INC.D2 -> INC.2</td>
<td>INCA.D10 -> INC.2</td>
</tr>
<tr>
<td>INC.D1 -> INC.1</td>
<td>INCA.D9 -> INC.1</td>
</tr>
<tr>
<td>INC.D0 -> INC.0</td>
<td>INCA.D8 -> INC.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 bits data BUS</th>
<th>16 bits data BUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA.D7 -> INA.7</td>
<td>INCA.D7 -> INA.7</td>
</tr>
<tr>
<td>INA.D6 -> INA.6</td>
<td>INCA.D6 -> INA.6</td>
</tr>
<tr>
<td>INA.D5 -> INA.5</td>
<td>INCA.D5 -> INA.5</td>
</tr>
<tr>
<td>INA.D4 -> INA.4</td>
<td>INCA.D4 -> INA.4</td>
</tr>
<tr>
<td>INA.D3 -> INA.3</td>
<td>INCA.D3 -> INA.3</td>
</tr>
<tr>
<td>INA.D2 -> INA.2</td>
<td>INCA.D2 -> INA.2</td>
</tr>
<tr>
<td>INA.D1 -> INA.1</td>
<td>INCA.D1 -> INA.1</td>
</tr>
<tr>
<td>INA.D0 -> INA.0</td>
<td>INCA.D0 -> INA.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 bits data BUS</th>
<th>16 bits data BUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IND.D7 -> IND.7</td>
<td>INDB.D15 -> IND.7</td>
</tr>
<tr>
<td>IND.D6 -> IND.6</td>
<td>INDB.D14 -> IND.6</td>
</tr>
<tr>
<td>IND.D5 -> IND.5</td>
<td>INDB.D13 -> IND.5</td>
</tr>
<tr>
<td>IND.D4 -> IND.4</td>
<td>INDB.D12 -> IND.4</td>
</tr>
<tr>
<td>IND.D3 -> IND.3</td>
<td>INDB.D11 -> IND.3</td>
</tr>
<tr>
<td>IND.D2 -> IND.2</td>
<td>INDB.D10 -> IND.2</td>
</tr>
<tr>
<td>IND.D1 -> IND.1</td>
<td>INDB.D9 -> IND.1</td>
</tr>
<tr>
<td>IND.D0 -> IND.0</td>
<td>INDB.D8 -> IND.0</td>
</tr>
</tbody>
</table>
8 bits data BUS

<table>
<thead>
<tr>
<th>INB.D7</th>
<th>-></th>
<th>INB.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>INB.D6</td>
<td>-></td>
<td>INB.6</td>
</tr>
<tr>
<td>INB.D5</td>
<td>-></td>
<td>INB.5</td>
</tr>
<tr>
<td>INB.D4</td>
<td>-></td>
<td>INB.4</td>
</tr>
<tr>
<td>INB.D3</td>
<td>-></td>
<td>INB.3</td>
</tr>
<tr>
<td>INB.D2</td>
<td>-></td>
<td>INB.2</td>
</tr>
<tr>
<td>INB.D1</td>
<td>-></td>
<td>INB.1</td>
</tr>
<tr>
<td>INB.D0</td>
<td>-></td>
<td>INB.0</td>
</tr>
</tbody>
</table>

16 bits data BUS

<table>
<thead>
<tr>
<th>IND.B7</th>
<th>-></th>
<th>INB.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>IND.B6</td>
<td>-></td>
<td>INB.6</td>
</tr>
<tr>
<td>IND.B5</td>
<td>-></td>
<td>INB.5</td>
</tr>
<tr>
<td>IND.B4</td>
<td>-></td>
<td>INB.4</td>
</tr>
<tr>
<td>IND.B3</td>
<td>-></td>
<td>INB.3</td>
</tr>
<tr>
<td>IND.B2</td>
<td>-></td>
<td>INB.2</td>
</tr>
<tr>
<td>IND.B1</td>
<td>-></td>
<td>INB.1</td>
</tr>
<tr>
<td>IND.B0</td>
<td>-></td>
<td>INB.0</td>
</tr>
</tbody>
</table>

The indication **INx.y** stands for sections A, B, C and D. Their input signals are available on connectors K2 and K3.

Performing an input operation at the address of the above mentioned registers the corresponding optocoupled input signals are acquired.

The correspondence between status of an input and value of a bit is:

- **Bit at logic 1** -> Input disabled = NPN Input contact open
- **Bit at logic 0** -> Input enabled = NPN Input contact closed
EXTERNAL CARDS

PCI 01 board can interface to most of grifo® industrial boards. Their main purpose is to perform a digital Inpu/Output interfacement between CPU (GPC®) cards and the external world. Here is reported an illustrative list of cards capable to interact with PCI 01 board with a short description of their features; for further informations please request the specific documentation.

MB3 01-MB4 01-MB8 01
Mother Board 3, 4, 8 slots
Motherboard featuring 3, 4 or 8 slots of ABACO® industrial BUS; pitch 4 TE; standard power supply connectors; LEDs for visual feed-back of power supply; holes for rack docking.

SPB 04-SPB 08
Switch Power BUS 4-8 slots
Motherboard featuring 4-8 slots of ABACO® industrial BUS; pitch 4 TE; standard power supply connectors; termination resistances; connector type F for SPC xxx supply; holes for rack docking.

ABB 03
ABACO® Block BUS 3 slots
3 slots ABACO® mother board; 4 TE pitch connectors; ABACO® I/O BUS connector; screw terminal for power supply; connection for DIN C type and Ω rails.

ABB 05
ABACO® Block BUS 5 slots
5 slots ABACO® mother board with power supply. Double power supply built in; 5Vdc 2.5A section for powering the on board logic; second section at 24Vdc 400mA galvanically coupled, for the optocoupled input lines. Auxiliary connector for ABACO® I/O BUS. Connection for DIN Ω rails.

SBP 02-xx
Switch BLOCK Power xx version
Low cost switching power supply able to generate voltage from +5 to +40 Vdc and current up to 2.5 A; Input from 12 to 24 Vac; Connection for DIN C Type and Ω rails.

SPC 03.5S
Switch Power Card +5 Vdc
Europe format switching power supply capable to provide +5 Vdc to a load of 4 A; input voltage 12÷24 Vac; power-failure; connector for back-up battery; standard connector for mother board SPB 0x.

SPC 512
Switch Power Card +5 Vdc +12 Vdc
Europe format switching power supply capable to provide +5 Vdc 5A and +12 Vdc 2.5 A; input voltage 12÷24 Vac; power-failure; connector for back-up battery; standard connector for mother board SPB 0x.
GPC® 51
General Purpose Controller fam. 51
Microprocessor family 51 INTEL including the masked BASIC chip; the board features: 16 I/O TTL lines; dip switch; 3 timer/counter; RS 232; 4 A/D converter signals resolution 11 bit; buzzer; on board EPROM programmer; RTC and 32K SRAM with Lithium battery back up; controller for display and keyboard.

GPC® 188F
General Purpose Controller 80C188
80C188 µP 20MHz; 1 RS 232 line; 1 RS 232, RS 422-485 or Current Loop line; 24 TTL I/O lines; 1M EPROM or 512K FLASH; 1M RAM Lithium battery backed; 8K serial EEPROM; RTC; Watch Dog; 8 Dip switch; 3 Timer Counter; 8 13 bit A/D lines; Power failure; activity LEDs; single power supply +5Vdc.

GPC® 15A
General Purpose Controller 84C15
Full CMOS card, 10÷20 MHz 84C15 CPU; 512K EPROM or FLASH; 128K RAM; 8K RAM and RTC backed; 8K serial EEPROM; 1 RS 232 line; 1 RS 232 line or RS 422-485 or Current Loop line; 32 or 40 TTL I/O lines; CTC; Watch dog; 2 Dip switches; Buzzer.

GPC® 150
General Purpose Controller 84C15
Microprocessor Z80 at 16 MHz; implementation completely CMOS; 512K EPROM or FLASH; 512K SRAM; RTC; Back-Up through external Lithium battery; 4M serial FLASH; 1 serial line RS 232 plus 1 RS 232 or RS 422-485 or current loop; 40 I/O TTL; 2 timer/counter; 2 watch dog; dip switch; EEPROM; A/D converter with resolution 12 bit; activity LED.

GPC® 15R
General Purpose Controller 84C15
84C15 µP, 10÷16 MHz; 1 RS 232 line; 1 RS 232 or RS 422-485 or C. L. line; 16÷24 TTL I/O lines; 16 Opto-in; 8 Relays; 4 Opto Coupled Timers Counters; 512K EPROM or FLASH; 512K RAM and RTC backed; 8K serial EEPROM; 8K Backed RAM modul; Buzzer; 1 Activity LED; Watch dog; 4÷12 readable DIPs; LCD Interface.

GPC® 323
General Purpose Controller 51 family
80C32 µP, 14 MHz; Full CMOS; 1 RS 232 line (software); 1 RS 232 or RS 422-485 or Current Loop line; 24 TTL I/O lines; 11 A/D 12 bits lines; 3 Timers Counters; 64K EPROM; 64K RAM; 32K RAM and RTC backed; 32K DIL EEPROM; 8K serial EEPROM; Buzzer; 2 Activity LED; Watch dog; 5 readable DIPs; LCD Interface.

GPC® 553
General Purpose Controller 80C552
80C552 µP, 22÷33 MHz; 1 RS 232 line (software); 1 RS 232 or RS 422-485 or Current Loop line; 16 TTL I/O lines; 8 A/D 10 bits lines; 3 Timers Counters; 64K EPROM; 64K RAM; 32K RAM and RTC backed; 32K DIL EEPROM; 8K serial EEPROM; 2 PWM lines; 1 Activity LED; Watch dog; 5 readable DIPs; LCD Interface.
FIGURE 13: POSSIBLE CONNECTIONS DIAGRAM

ANY MOTHERBOARD TYPE WITH ABACO® BUS

POWER SUPPLY
+5Vdc only
(SPC 03.5S or SPC 512)

16 INPUT LINES
NPN OPTO COUPLED

FBC 20 or FBC L22 (OPTIONAL)

16 INPUT LINES
NPN OPTO COUPLED

POWER SUPPLY
+24 Vdc
(SP B 02.24)

20 pins Flat-cable (FLT 20+20)
GPC® 153
General Purpose Controller Z80
84C15 µP, 10÷16 MHz; Full CMOS; 1 RS 232 line; 1 RS 232 or RS 422-485 or Current Loop line; 16 TTL I/O lines; 8 A/D 12 bits lines; 2÷4 Timers Counters; 512K EPROM or FLASH; 512K RAM and RTC backed; 8K serial EEPROM; Buzzer; 1 Activity LED; Watch dog; 8 readable DIPs; LCD Interface.

GPC® 183
General Purpose Controller Z180
Z180 µP, 10÷16 MHz; Full CMOS; 1 RS 232 line; 1 RS 232 or RS 422-485 or Current Loop line; 24 TTL I/O lines; 11 A/D 12 bits lines; 2 Timers Counters; 512K EPROM or FLASH; 512K RAM and RTC backed; 8K serial EEPROM; Buzzer; 2 Activity LED; Watch dog; 4 readable DIPs; LCD Interface.

GPC® 324/D
“4” Type General Purpose Controller 80C32/320
80C32 or 80C320 µP, 14÷22 MHz; Full CMOS; 1 RS 232 line; 1 RS 232 or RS 422-485 or Current Loop line; 4÷16 TTL I/O lines; 3 Timers Counters; 64K EPROM; 64K RAM; 32K RAM backed; 32K DIL E2; 8K serial EEPROM; Watch dog; 1 readable DIP; LCD Interface; Abaco® I/O BUS; 5Vdc Power supply; Size: 100x50 mm.

GPC® 554
General Purpose Controller 80C552
Microprocessor 80C552 at 22 MHz; implementation completely CMOS; 32K EPROM; 32K SRAM; 32K EEPROM or SRAM; EEPROM; 2 RS 232 serial lines; 16 I/O TTL; 2 PWM lines; 16 bits Timer/Counter; Watch Dog; 6 signals A/D converter with resolution 10 bit; interface for ABACO® I/O BUS.

GPC® 154
“4” Type General Purpose Controller Z80
84C15 µP, 10÷16 MHz; Full CMOS; 1 RS 232 line; 1 RS 232 or RS 422-485 line; 16 TTL I/O lines; 2÷4 Timers Counters; 512K EPROM or FLASH; 512K RAM and RTC backed; 8K serial EEPROM; Watch dog; 2 readable DIPs; LCD Interface; Abaco® I/O BUS; 5Vdc Power supply; Size: 100x50 mm.

GPC® 884
General Purpose Controller Am188ES
Microprocessor AMD Am188ES up to 40 MHz16 bits; implementation completely CMOS; serie 4 format; 512K EPROM or FLASH; 512K SRAM backed with Lithium battery; RTC; 1 RS 232 serial line + 1 RS 232 or RS 422-485 or current loop; 16 I/O TTL; 3 timer/counter; watch dog; EEPROM; 11 signals A/D converter with 12 bit resolution; interface for ABACO® I/O BUS.

GPC® 114
General Purpose Controller 68HC11
Microprocessor 68HC11A1 at 8 MHz; implementation completely CMOS; serie 4 format; 32K EPROM; 32K SRAM backed with Lithium battery; 32K EPROM, SRAM, EEPROM; RTC; 1 serial line RS 232 or RS 422-485; 10 I/O TTL; 3 timer/counter; watch dog; 8 signals A/D converter with resolution 8 bit; 1 asunchronous serial line; extremly low power consumption; interface for ABACO® I/O BUS.
PBI 01
PNP BLOCK Input
Interface for PNP drivers through NPN inputs; 16 inputs for driver PNP, visualized by LEDs; 16 NPN outputs on ABACO® standard input connector; Plastic mount for rails DIN 46277-1 and 3.

FBC 20-120
Flat Block Contact 20 vie
Interface for 2 or 1 mounting cable connectors (low profile 20 pins male) and quick release screw terminal connectors; Plastic mount for rails DIN 46277-1 and 3.

FBC 34
Flat Block Contact 34 vie
Interface for 2 mounting cable connector (low profile 34 pins male) and quick release screw terminal connectors; Plastic mount for rails DIN 46277-1 and 3.

FBC L20
Flat Block Contact LED 20 vie
Interface for 1 mounting cable connector (low profile 20 pins male, featuring ABACO® standard Input pin out, and quick release screw terminal connectors; All the signals are visualized through LEDs; Plastic mount for rails DIN 46277-1 and 3.

FBC L34
Flat Block Contact LED 34 vie
Interface for 2 mounting cable connectors (low profile34 and 20 pins male) and quick release screw terminal connectors; featuring ABACO® standard Input and Output pin out; All the signals are visualized through LEDs; Plastic mount for rails DIN 46277-1 and 3.
BIBLIOGRAPHY

Here follows a list of manuals and technical notes that the User can read to acquire more informations about PCI 01 board.

Manual TEXAS INSTRUMENTS: *The TTL data Book - SN54/74 Families*

Manual TOSHIBA: *Photo Couplers - Data Book*

Please connect to the manufactures Web sites to get the latest version of all manuals and data sheets.
APPENDIX A: ALPHABETICAL INDEX

Symbols
π-FILTER 9

A
ABACO® BUS 4, 6, 12, 14, 16, 18
ADDRESSABLE BYTES 6
ADDRESSING 4, 18
ADDRESSING SPACE 16

B
BIBLIOGRAPHY 26
BOARD CONNECTIONS 15
BOARD MAPPING 16
BYTES / WORDS OCCUPIED 6

C
CARD VERSION 1
CONNECTIONS 8
CONNECTORS 6
 K1 12
 K2 8
 K3 10
CONTROL LOGIC 4
CURRENT CONSUMPTION 6

D
DIP SWITCH 6
DIP1 4, 16, 18

E
ELECTRIC FEATURES 6
EXTERNAL CARDS 21

F
FILTER 6, 9

G
GENERAL FEATURES 6
GENERAL INFORMATION 2
GND OPTO 15
HARDWARE DESCRIPTION

I
INPUT 4, 8, 10, 15, 19
INSTALLATION 8
INTERFACING 4
INTERNAL REGISTERS ADDRESSING 18
INTRODUCTION 1

J
JUMPER 15

L
LEDS 9, 14

M
MINIMUM CURRENT ON NPN INPUTS 6

N
NPN DRIVERS 9
NPN INPUT 20
NPN OPTOCOUPLLED DIGITAL INPUTS 8, 10
NPN STANDARD 15

O
OPTOCOUPLLED NPN DIGITAL INPUTS 6, 19
OPTOCOUPLERS 9, 14

P
PERIPHERAL DEVICES SOFTWARE DESCRIPTION 19
PHYSICAL FEATURES 6
POWER SUPPLY 6, 14

R
REGISTERS 18
RELATIVE HUMIDITY 6

S
SIZE 6
T
TECHNICAL FEATURES 6
TEMPERATURE RANGE 6
TTL 15

V
VISUAL SIGNALATIONS 14
VOPTO 6, 14

W
WEIGHT 6