Eurocard format size 100x160 mm; interface to ABACO® industrial BUS; 4 analog to digital multislope integration technique with resolution 15 bits plus sign; independent conversion speed for the 4 sections selectable amongst 5, 10, 20 or 40 conversions per second; voltage full range and input ranges software selectable amongst ±3.2768 Vdc, ±5 Vdc, ±10 Vdc; current input 0÷20 mA or 4÷20 mA; 9 indication LEDs on the front panel; 9 pins D type connector for input analog signals; circuitry to generate interrupts on ABACO® BUS; 8 bits data BUS management; only as low as 4 bytes taken; polarity indication through software; highest noise immunity against 50 Hz mains frequency; single conversion or automatic conversion working mode; direct interfacement to FBC field modules; unique power supply +5Vdc.
IMPORTANT

Although all the information contained herein have been carefully verified, grifo® assumes no responsibility for errors that might appear in this document, or for damage to things or persons resulting from technical errors, omission and improper use of this manual and of the related software and hardware. grifo® reserves the right to change the contents and form of this document, as well as the features and specification of its products at any time, without prior notice, to obtain always the best product.

For specific informations on the components mounted on the card, please refer to the Data Book of the builder or second sources.

SYMBOLS DESCRIPTION

In the manual could appear the following symbols:

⚠️ Attention: Generic danger

⚡️ Attention: High voltage

Trade Marks

GPC®, grifo®: are trade marks of grifo®.

Other Product and Company names listed, are trade marks of their respective companies.
GENERAL INDEX

- **INTRODUCTION** ... 1
- **CARD VERSION** ... 1
- **GENERAL INFORMATION** .. 2
 - **INTERFACING AND ADDRESSING** 4
 - **CONTROL LOGIC** .. 4
 - **CLOCK** ... 4
 - **INPUT INTERFACES** .. 4
 - **REFERENCE VOLTAGES** .. 5
 - **A/D CONVERTER** ... 5
- **TECHNICAL FEATURES** ... 6
 - **GENERAL FEATURES** ... 6
 - **PHYSICAL FEATURES** .. 6
 - **ELECTRIC FEATURES** ... 8
- **INSTALLATION** .. 10
 - **CONNECTIONS** ... 10
 - **CN1 - ANALOG INPUTS CONNECTOR** 10
 - **K1 - CONNECTOR FOR ABACO® BUS** 12
 - **VISUAL SIGNALATIONS** .. 14
 - **POWER SUPPLY** .. 14
 - **DIP SWITCH** ... 16
 - **BOARD CONNECTIONS** .. 16
 - **TEST POINT** ... 16
 - **INTERRUPT** .. 17
 - **TRIMMERS AND CALIBRATION** 17
 - **RESET** .. 18
 - **TYPE OF ANALOG INPUT SELECTION** 19
 - **CONVERSION SPEED SELECTION** 19
 - **JUMPERS** ...
 - **2 PINS JUMPERS** ... 21
 - **3 PINS JUMPERS** ... 26
 - **8 PINS JUMPERS** ... 30
 - **HARDWARE DESCRIPTION** .. 32
 - **BOARD MAPPING** ... 32
 - **INTERNAL REGISTERS ADDRESSING** 34
 - **PERIPHERAL DEVICES SOFTWARE DESCRIPTION** 35
 - **PPI 82C55/71055** ... 35
 - **CONVERSION MANAGEMENT** 36
 - **CONVERSION ON REQUEST** 38
 - **CONVERSION CONTINUOUSLY** 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVITY LED</td>
<td>52</td>
</tr>
<tr>
<td>CONFIGURATION INPUTS</td>
<td>52</td>
</tr>
<tr>
<td>EXTERNAL CARDS</td>
<td>53</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>57</td>
</tr>
<tr>
<td>APPENDIX A: ALPHABETICAL INDEX</td>
<td>A-1</td>
</tr>
</tbody>
</table>
FIGURES INDEX

FIGURE 1: BLOCK DIAGRAM ... 3
FIGURE 2: COMPONENTS MAP ... 7
FIGURE 3: CARD PHOTO .. 9
FIGURE 4: CN1 - ANALOG INPUTS CONNECTOR 10
FIGURE 5: CONNECTORS, DIP SWITCH, LEDS LOCATION 11
FIGURE 6: K1 - CONNECTOR FOR ABACO® BUS 12
FIGURE 7: VISUAL SIGNALATIONS TABLE 14
FIGURE 8: TRIMMERS AND TEST POINTS LOCATION 15
FIGURE 9: TRIMMERS TABLE .. 17
FIGURE 10: JUMPERS SUMMARIZING TABLE (PART 1) 21
FIGURE 11: JUMPERS SUMMARIZING TABLE (PART 2) 22
FIGURE 12: JUMPERS LOCATION (PART 1) ... 23
FIGURE 13: JUMPERS SUMMARIZING TABLE (PART 3) 24
FIGURE 14: JUMPERS LOCATION (PART 2) ... 25
FIGURE 15: 2 PINS JUMPERS TABLE (PART 1) 26
FIGURE 16: 2 PINS JUMPERS TABLE (PART 2) 27
FIGURE 17: 2 PINS JUMPERS TABLE (PART 3) 28
FIGURE 18: 2 PINS JUMPERS TABLE (PART 4) 29
FIGURE 19: 2 PINS JUMPERS TABLE (PART 5) 30
FIGURE 20: 3 PINS JUMPERS TABLE ... 30
FIGURE 21: 8 PINS JUMPERS TABLE .. 31
FIGURE 22: INTERNAL REGISTERS ADDRESSING TABLE 34
FIGURE 22: CONVERSION ON REQUEST FLOW CHART (PART 1) 43
FIGURE 23: CONVERSION ON REQUEST FLOW CHART (PART 2) 44
FIGURE 24: CONVERSION CONTINUOUSLY FLOW CHART (PART 1) ... 50
FIGURE 25: CONVERSION CONTINUOUSLY FLOW CHART (PART 2) ... 51
FIGURE 26: POSSIBLE CONNECTIONS DIAGRAM 55
INTRODUCTION

The use of these devices has turned - IN EXCLUSIVE WAY - to specialized personnel.

The purpose of this handbook is to give the necessary information to the cognizant and sure use of the products. They are the result of a continual and systematic elaboration of data and technical tests saved and validated from the manufacturer, related to the inside modes of certainty and quality of the information.

The reported data are destined- IN EXCLUSIVE WAY- to specialized users, that can interact with the devices in safety conditions for the persons, for the machine and for the environment, impersonating an elementary diagnostic of breakdowns and of malfunction conditions by performing simple functional verify operations, in the height respect of the actual safety and health norms.

The informations for the installation, the assemblage, the dismantlement, the handling, the adjustment, the reparation and the contingent accessories, devices etc. installation are destined - and then executable - always and in exclusive way from specialized warned and educated personnel, or directly from the TECHNICAL AUTHORIZED ASSISTANCE, in the height respect of the manufacturer recommendations and the actual safety and health norms.

The devices can't be used outside a box. The user must always insert the cards in a container that respect the actual safety normative. The protection of this container is not threshold to the only atmospheric agents, but specially to mechanic, electric, magnetic, etc. ones.

To be on good terms with the products, is necessary guarantee legibility and conservation of the manual, also for future references. In case of deterioration or more easily for technical updates, consult the AUTHORIZED TECHNICAL ASSISTANCE directly.

To prevent problems during card utilization, it is a good practice to read carefully all the informations of this manual. After this reading, the user can use the general index and the alphabetical index, respectly at the begining and at the end of the manual, to find information in a faster and more easy way.

CARD VERSION

The present handbook is reported to the LAD 415 card release 200292 and later. The validity of the bring informations is subordinate to the number of the card release. The user must always verify the correct correspondence among the two denotations. On the card the release number is present in more points both board printed diagram (serigraph) and printed circuit (for example near jumpers J11 both on the component side and on the solder side).
GENERAL INFORMATION

LAD 415 (4 Low cost Analog to Digital 15 bits) card is a powerful Eurocard format card, provided
with ABACO® industrial BUS interface. This card belongs to the analog peripherals units list and,
in specific, its purpose is to provide four high precision Analog to Digital conversion lines.
The analog signals are connected through one 9 pins ID type standard connector. Four independent
A/D Converter circuitries, based on as many TSC 850, warrant a complete separation of the signals.
A/D circuitry features 15 bits of resolution plus sign.
The signal to be acquired can be configured as voltage (±3.2768 Vdc, ±5 Vdc, ±10 Vdc) or current
(0÷20 mA or 4÷20 mA) independently for each section by moving the opportune jumper for
inserting a current-to-voltage conversion.
The 9 pins output connector allows an immediate interfacing to modules for the field, like FBC D9x,
that untangle the signals from the flat cable to comfortable quick release screw terminal connectors.
Remarkable is FBC D9M for the specific use with this card and an extension cable.
LAD 415 card can be driven through any CPU board in the ABACO® listing and takes as low as 4
contiguous bytes in the addressing space.
A remarkable feature of LAD 415 is the capability to be Multi-Range and to allows the acquisition
of input signal with several different characteristics by a simple hardware setting. On the front of the
board one software manageable LED is available, in addition there are two more LEDs for each
section that signal the end of a conversion and the access to A/D converter.
LAD 415 is the ideal component for all the applications where good conversion speed, very high
precision, several lines and low costs are required. It is in fact more convenient to install more cards
to increase the number of signals to acquire than installing multiplexing cards that degrade the
conversion quality and decrease the sampling rate, vanificating the investment for an high speed
card.
Overall features of LAD 415 are as follows:

- Eurocard format size 100x160 mm
- Interface to ABACO® industrial BUS
- 4 analog to digital multislope integration technique with resolution 15 bits plus sign
- Independent conversion speed for the 4 sections selectable amongst 5, 10, 20 or 40 conversions
 per second
- Voltage full range and input ranges software selectable amongst ±3.2768 Vdc, ±5 Vdc, ±10 Vdc
- Current input 0÷20 mA or 4÷20 mA
- 9 indication LEDs on the front panel
- 9 pins D type connector for input analog signals
- Circuitry to generate interrupts on ABACO® BUS
- 8 bits data BUS management
- Only as low as 4 bytes taken
- Polarity indication through software
- Highest noise immunity against 50 Hz mains frequency
- Single conversion or automatic conversion working mode
- Direct interfacement to FBC field modules
- Unique power supply +5Vdc
FIGURE 1: BLOCK DIAGRAM

LEDS

CN1

INT. ANAL. CH. 0
INT. ANAL. CH. 1
INT. ANAL. CH. 2
INT. ANAL. CH. 3

CONTROL
LOGIC

PPI 8255

A/D CH. 0
A/D CH. 1
A/D CH. 2
A/D CH. 3

INTERFACING AND ADDRESSING SECTION

K1 - BUS ABACO®

BUSY

INTERRUPT
GENERATOR

CONVERSION
FREQUENCIES
GENERATOR

REFERENCE
VOLTAGES

A/D CH. 0
A/D CH. 1
A/D CH. 2
A/D CH. 3

LAD 415 Rel. 5.10

Page 3
Here follows a description of **LAD 415** board's functional blocks, with an indication of the operations performed by each one. To easily locate these blocks and verify their connections please refer to figure 1.

INTERFACING AND ADDRESSING

This section manages the data exchange between control logic and command board through **ABACO® BUS**. In particular, all written or read data transit across this section that, in addition, provides the board I/O management in a 256 or 512 bytes addressing space, by setting the dip switch **DIP1**.

For further information please refer to the chapter dedicated to board's software description.

CONTROL LOGIC

This section generates all the chip select signals needed to access the several peripherals on **LAD 415** boards. Using this section the programmer can interact to the board's several sections, verifying their status, setting configuration of A/D converters, etc.

All this can be done through a simple software management based on **ABACO® BUS**, to which the control logic connects through the interfacing and addressing section. Control logic section is based on a PPI 82C55. For further information please refer to chapter “PERIPHERAL DEVICES SOFTWARE DESCRIPTION”.

CLOCK

LAD 415 is provided with an oscillator circuit to generate the clock signals independently needed by the four A/D converter sections. Required frequencies are generated from a 3.2768 MHz quartz, each A/D converter section can receive the needed frequency by simply moving a jumper. Such frequency determines the time succession of the several A/D conversion phases process, its value has been chosen to optimize both conversion time and noise immunity.

INPUT INTERFACES

Each of the 4 analog inputs is provided with an independent interfacemnt circuitry that fits the input signal coming from external world to match the requirement of the A/D converter analog input. Such circuitry is based on precision components selected in laboratory, to provide the boards with the same kind of interfaacement.

Should the input interface not fulfil the requirements of user application, please contact **grifo®** directly.

For further information about input circuitry please refer to paragraph “TRIMMERS AND CALIBRATION”.

Page 4

REFERENCE VOLTAGES

A specific precision circuitry is charged to generate the two reference voltages (Vref) required by the A/D converters. Such voltages are perfectly stabilized and independent from the board supply and temperature variations, so to increase LAD 415 precision and reliability. Each A/D converter has its own independent Vref setting.

For further information please see paragraph “TRIMMERS AND CALIBRATION”.

A/D CONVERTER

LAD 415 board features four independent A/D converter sections based on as many TSC 850, these are precision A/D converters that take advantage of the multiple slope technique. This allows to feature the same precision of double slope converters and higher conversion speed.

Overall features are:

- Resolution 15 bits plus sign
- High noise immunity
- Max linearity and offset error ±2 LSB
- Analog internal circuitry requires no calibrations (self zero)
- Conversion in continuous mode or “single shot” mode
- Simple software management

TSC 850 is the ideal component for the typical application of industrial automation, where a good conversion speed and a very high grade of precision are required. For further information about this component please refer to manufacturer documentation.
TECHNICAL FEATURES

GENERAL FEATURES

On board resources: 4 analog inputs (four 1 channel A/D converters)
1 eight pins dip switch to set I/O address

BUS type: Industrial ABACO®

Addressing space: 256 or 512 bytes

Bytes taken: 4

On board peripherals: TSC 850
PPI 82C55 or PPI 71055

A/D external clock frequency: 3.2768 MHz

A/D conversion speed: selectable amongst 5, 10, 20 and 40 conversion/sec

A/D resolution: 15 bits + sign

A/D max linearity and offset error: ±2 LSB (*)

A/D max offset error: ±0.5 LSB (*)

A/D differential input error: ±0.5 LSB (*)

PHYSICAL FEATURES

Size: Standard EUROCARD format 100x160 mm

Weight: 190 g

Connectors: K1: DIN 41612 64 pins M 90° A+C type C
CN1: 9 pins D type M 90°

Temperature range: from 0 to 70° C

Relative humidity: 20% up to 90% (without condensing)

(*) Values referred to a working temperature of 20 °C
Figure 2: Components map
ELECTRIC FEATURES

Power supply: +5 Vdc ± 5%

Current consumption: 230 mA

A/D input impedance: ≥ 1 MΩ

Analog inputs: ±3.2768 Vdc, ±5 Vdc, ±10 Vdc
0÷20 mA or 4÷20 mA

A/D reference voltages: 1.6384 Vdc and 25.60 mVdc generated on board

Interface on analog inputs: analog signal fitting through voltage dividers and drop resistors
Figure 3: Card Photo
INSTALLATION

In this chapter there are the information for a right installation and correct use of LAD 415 card. The user can find the location and functions of each connectors, LEDs, trimmer and some explanatory diagrams.

CONNECTIONS

The board has two connectors that can be linked to other devices or directly to the field, according to system requirements. In this paragraph there are connectors pin outs, a short signals description (including the signals direction) and connectors location, plus some figures that describe how the interface signals are connected on the card. To easily locate the connectors please refer to figure 5.

CN1 - ANALOG INPUTS CONNECTOR

The connector for the analog input of the four TSC 850, called CN1, is a D type, 9 pins, 90 degrees. The lines available on CN1 feature signal fitting for the ranges $\pm 3.2768 \text{ Vdc}$, $\pm 5 \text{ Vdc}$, $\pm 10 \text{ Vdc}$ or $0 \div 20 \text{ mA}$ or $4 \div 20 \text{ mA}$. Signals placement on the connector has been designed to reduce problems of noise and interference and to warrant a good transmission quality.

![Diagram of CN1 connector with pinouts and signals description.](image)

Figure 4: CN1 - Analog inputs connector

Signals description:

- \(\text{Vin}+\ n \) = I - A/D channel n-th positive differential input
- \(\text{Vin} -\ n \) = I - A/D channel n-th negative differential input
- \(\text{GND} \) = - Ground
- \(\text{SHIELD} \) = - Connector shield connectable to GND
Figure 5: Connectors, DIP switch, LEDs location
K1 - CONNECTOR FOR ABACO® BUS

The connector for ABACO® industrial BUS, called K1 on the board, is a DIN 41612, male, a 90 °, type C, A+C.

Here follows the pin-out of the connector installed on LAD 415, in addition there is the standard 8 bits and 16 bits ABACO® BUS pin-out.

Please remark that all the signals here described are TTL, except for the power supplies.

<table>
<thead>
<tr>
<th>A 16 bit BUS</th>
<th>A 8 bit BUS</th>
<th>A LAD 415</th>
<th>PIN</th>
<th>A LAD 415</th>
<th>C 8 bit BUS</th>
<th>C 16 bit BUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>1</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
<td>2</td>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
</tr>
<tr>
<td>D0</td>
<td>D0</td>
<td>D0</td>
<td>3</td>
<td>N. C.</td>
<td>D8</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>D1</td>
<td>4</td>
<td>N. C.</td>
<td>D9</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>D2</td>
<td>D2</td>
<td>5</td>
<td>N. C.</td>
<td>D10</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>D3</td>
<td>D3</td>
<td>6</td>
<td>/INT</td>
<td>/INT</td>
<td>/INT</td>
</tr>
<tr>
<td>D4</td>
<td>D4</td>
<td>D4</td>
<td>7</td>
<td>N. C.</td>
<td>/NMI</td>
<td>/NMI</td>
</tr>
<tr>
<td>D5</td>
<td>D5</td>
<td>D5</td>
<td>8</td>
<td>N. C.</td>
<td>/HALT</td>
<td>D11</td>
</tr>
<tr>
<td>D6</td>
<td>D6</td>
<td>D6</td>
<td>9</td>
<td>N. C.</td>
<td>/MREQ</td>
<td>/MREQ</td>
</tr>
<tr>
<td>D7</td>
<td>D7</td>
<td>D7</td>
<td>10</td>
<td>/IORQ</td>
<td>/IORQ</td>
<td>/IORQ</td>
</tr>
<tr>
<td>A0</td>
<td>A0</td>
<td>A0</td>
<td>11</td>
<td>/RD</td>
<td>/RD</td>
<td>/RDLDS</td>
</tr>
<tr>
<td>A1</td>
<td>A1</td>
<td>A1</td>
<td>12</td>
<td>/WR</td>
<td>/WR</td>
<td>/WRLDS</td>
</tr>
<tr>
<td>A2</td>
<td>A2</td>
<td>A2</td>
<td>13</td>
<td>N. C.</td>
<td>/BUSAK</td>
<td>D12</td>
</tr>
<tr>
<td>A3</td>
<td>A3</td>
<td>A3</td>
<td>14</td>
<td>N. C.</td>
<td>/WAIT</td>
<td>/WAIT</td>
</tr>
<tr>
<td>A4</td>
<td>A4</td>
<td>A4</td>
<td>15</td>
<td>N. C.</td>
<td>/BUSRQ</td>
<td>D13</td>
</tr>
<tr>
<td>A5</td>
<td>A5</td>
<td>A5</td>
<td>16</td>
<td>/RESET</td>
<td>/RESET</td>
<td>/RESET</td>
</tr>
<tr>
<td>A6</td>
<td>A6</td>
<td>A6</td>
<td>17</td>
<td>/M1</td>
<td>/M1</td>
<td>/IACK</td>
</tr>
<tr>
<td>A7</td>
<td>A7</td>
<td>A7</td>
<td>18</td>
<td>N. C.</td>
<td>/RFSH</td>
<td>D14</td>
</tr>
<tr>
<td>A8</td>
<td>A8</td>
<td>A8</td>
<td>19</td>
<td>N. C.</td>
<td>/MEMDIS</td>
<td>/MEMDIS</td>
</tr>
<tr>
<td>A9</td>
<td>A9</td>
<td>N. C.</td>
<td>20</td>
<td>N. C.</td>
<td>VDUSEL</td>
<td>A22</td>
</tr>
<tr>
<td>A10</td>
<td>A10</td>
<td>N. C.</td>
<td>21</td>
<td>N. C.</td>
<td>/IEI</td>
<td>D15</td>
</tr>
<tr>
<td>A11</td>
<td>A11</td>
<td>N. C.</td>
<td>22</td>
<td>N. C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>A12</td>
<td>N. C.</td>
<td>23</td>
<td>N. C.</td>
<td>CLK</td>
<td>CLK</td>
</tr>
<tr>
<td>A13</td>
<td>A13</td>
<td>N. C.</td>
<td>24</td>
<td>N. C.</td>
<td>/RDUDS</td>
<td></td>
</tr>
<tr>
<td>A14</td>
<td>A14</td>
<td>N. C.</td>
<td>25</td>
<td>N. C.</td>
<td>/WRUDS</td>
<td></td>
</tr>
<tr>
<td>A15</td>
<td>A15</td>
<td>N. C.</td>
<td>26</td>
<td>N. C.</td>
<td>A21</td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>N. C.</td>
<td>27</td>
<td>N. C.</td>
<td>A20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A17</td>
<td>N. C.</td>
<td>28</td>
<td>N. C.</td>
<td>A19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A18</td>
<td>N. C.</td>
<td>29</td>
<td>N. C.</td>
<td>/R.T.</td>
<td>/R.T.</td>
<td></td>
</tr>
<tr>
<td>+12 Vdc</td>
<td>+12 Vdc</td>
<td>N. C.</td>
<td>30</td>
<td>N. C.</td>
<td>-12 Vdc</td>
<td>-12 Vdc</td>
</tr>
<tr>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
<td>31</td>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
</tr>
<tr>
<td>+5 Vdc</td>
<td>+5 Vdc</td>
<td>GND</td>
<td>32</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>

Figure 6: K1 - Connector for ABACO® BUS
Signals description:

8 bits CPU

A0-A15 = O - Address BUS
D0-D7 = I/O - Data BUS
/INT = I - Interrupt request
/NMI = I - Non Maskable Interrupt
/HALT = O - Halt state
/MREQ = O - Memory Request
/IORQ = O - Input Output Request
/RD = O - Read cycle status
/WR = O - Write cycle status
/BUSAK = O - BUS Acknowledge
/WAIT = I - Wait
/BUSRQ = I - BUS Request
/RESET = O - Reset
/M1 = O - Machine cycle one
/RFSH = O - Refresh for dynamic RAM
/MEMDIS = I - Memory Display
/VDUSEL = O - VDU Selection
/IEI = I - Interrupt Enable Input
/CLK = O - System clock
/R.B. = I - Reset button
/+5 Vdc = I - Power supply at +5 Vdc
/+12 Vdc = I - Power supply at +12 Vdc
/-12 Vdc = I - Power supply at -12 Vdc
/GND = - Ground signal

16 bits CPU

A16-A22 = O - Address BUS
D8-D15 = I/O - Data BUS
/RD UDS = O - Read Upper Data Strobe
/WR UDS = O - Write Upper Data Strobe
/IACK = O - Interrupt Acknowledge
/RD LDS = O - Read Lower Data Strobe
/WR LDS = O - Write Lower Data Strobe

NOTE
Directionality indications as above stated are referred to a master (GPC®) board and have been kept untouched to avoid ambiguity in case of multi-boards systems.
VISUAL SIGNALATIONS

LAD 415 card is provided with nine signalation LEDs to show several status informations, as described in the following table:

<table>
<thead>
<tr>
<th>LEDS</th>
<th>COLOUR</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD1</td>
<td>Yellow</td>
<td>Software managed activity LED.</td>
</tr>
<tr>
<td>LD2</td>
<td>Red</td>
<td>It lights when an access to A/D channel 0 has occurred.</td>
</tr>
<tr>
<td>LD3</td>
<td>Green</td>
<td>It lights when A/D conversion end on channel 0 occurs.</td>
</tr>
<tr>
<td>LD4</td>
<td>Red</td>
<td>It lights when an access to A/D channel 1 has occurred.</td>
</tr>
<tr>
<td>LD5</td>
<td>Green</td>
<td>It lights when A/D conversion end on channel 1 occurs.</td>
</tr>
<tr>
<td>LD6</td>
<td>Red</td>
<td>It lights when an access to A/D channel 2 has occurred.</td>
</tr>
<tr>
<td>LD7</td>
<td>Green</td>
<td>It lights when A/D conversion end on channel 2 occurs.</td>
</tr>
<tr>
<td>LD8</td>
<td>Red</td>
<td>It lights when an access to A/D channel 3 has occurred.</td>
</tr>
<tr>
<td>LD9</td>
<td>Green</td>
<td>It lights when A/D conversion end on channel 3 occurs.</td>
</tr>
</tbody>
</table>

FIGURE 7: VISUAL SIGNALATIONS TABLE

The main purpose of LEDs is to show a visual indication about the card's status, making so easier debug and verify operations. All the LEDs are in the front of the board, near connector CN1. To easily locate these visual signalations please refer to the figure 5.

POWER SUPPLY

LAD 415 is provided with an efficient circuitry that solves in a comfortable and simple way the problem of the board's supply, under any condition of use.

Here follow the voltages needed:

+5 Vdc: Supplies the on board logic; must be in the range +5 Vdc ± 5% and must be provided through the specific pins of connector K1 (**ABACO® BUS**).

To warrant great immunity to external noise and so a correct working of the board, it is essential that **+5 Vdc** tension is galvanically isolated.
FIGURE 8: TRIMMERS AND TEST POINTS LOCATION
DIP SWITCH

LAD 415 is provided with an on board 8 pins dip switch (DIP1). Its purpose is to set the mapping address for control and data registers of the on board devices, with jumper J1. To set the connection modalities for signal /M1 jumper J2 is used, for /INT signal jumpers J23÷26 are used.

More information about card mapping and signals management can be found in chapter “PERIPHERAL DEVICES SOFTWARE DESCRIPTION” and in paragraph “JUMPERS”, while to easily locate them on the board please refer to figures 8, 12 and 14.

BOARD CONNECTIONS

To prevent possible connecting problems between **LAD 415** board and the external systems, the user has to read carefully the information of the previous paragraphs and he must follow these instructions:

- The TTL signals can be connected directly only to a device featuring the same type of interface. About the correspondence between logic signals and TTL output status, remember that a logic 0 generates a TTL 0 Vdc, while a logic 1 generates a TTL +5 Vdc.

- The analog inputs (A/D section) must be connected to signals in the following ranges: ±3.2768 Vdc, ±5 Vdc, ±10 Vdc or 0÷20 mA according to the board configuration. Please remember that the four analog inputs available on CN1 feature analog signal fitting through voltage dividers and drop resistors, to meet the requirements of TSC 850 input section, that converts the voltage range and the current signals in the voltage range accepted by A/D converter. For further information please refer to the paragraph “TYPE OF ANALOG INPUT SELECTION”.

TEST POINT

The board is provided with three test points called TP1÷3, that allow to read, through a galvanically isolated multimeter, the reference voltages calibrated in laboratory and whose values are Vref1=1.6384 Vdc and Vref2=25.60 mVdc, used by the A/D converter sections:

- TP1 -> Reference voltage 1 (Vref1) 1.6384 V
- TP2 -> Reference voltage 2 (Vref2) 25.60 mV
- TP3 -> Ground (GND)

Vref's are perfectly stabilized and completely independent from power supply voltage. To easily locate the test point contacts please refer to figure 8, while for further information about Vref signals please refer to the paragraph “TRIMMER AND CALIBRATION”.
INTERRUPT

LAD 415 is provided with a comfortable and efficient interrupt generation circuitry, that, if enabled, can generate an interrupt to the *GPC®* intelligent control card when one of the four analog to digital converter sections reach the end of a conversion. Such circuitry allows to optimize the time needed to manage the board, in fact the intelligent control card is not obliged to poll *LAD 415* registers, but can simply wait for an interrupt and read the conversion results.

ABACO® BUS interrupt signal, once it has been activated, remains in such status until the control card performs the read operation from *LAD 415* A/D converter data registers. This ensures a correct management also in case of contemporary interrupts, in fact the signal deactivates only after the proper software operations, which are time-indipendent. This means that if the interrupt routine reads the end of conversion bit then the data obtained by the correspondent conversion it is sure that the board interrupt are managed correctly. *LAD 415* interrupt generation circuitry can be connected or not connected to *ABACO®* BUS through jumpers J23, J24, J25 and J26.

For further information please refer to chapter “PERIPHERAL DEVICES SOFTWARE DESCRIPTION” and paragraph “JUMPERS”. To locate jumpers please refer to figures 12 and 14.

TRIMMERS AND CALIBRATION

On *LAD 415* board there are eleven trimmers, called TR1÷11, that calibrate the reference voltages and perform input signals fitting from selected signal range to the input range of TSC 850:

<table>
<thead>
<tr>
<th>TRIMMER</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1</td>
<td>Allows fine setting for reference voltage 1 (Vref1).</td>
</tr>
<tr>
<td>TR2</td>
<td>Allows fine setting for reference voltage 2 (Vref2).</td>
</tr>
<tr>
<td>TR3</td>
<td>Allows coarse setting for reference voltages 1 and 2 (Vref1 and Vref2).</td>
</tr>
<tr>
<td>TR4</td>
<td>Allows fine setting of the drop resistance value for current to voltage conversion on channel 3.</td>
</tr>
<tr>
<td>TR5</td>
<td>Allows fine setting of the resistance value of voltage divider for input in the ranges ±5 Vdc and ±10 Vdc on channel 3.</td>
</tr>
<tr>
<td>TR6</td>
<td>Allows fine setting of the drop resistance value for current to voltage conversion on channel 2.</td>
</tr>
<tr>
<td>TR7</td>
<td>Allows fine setting of the resistance value of voltage divider for input in the ranges ±5 Vdc and ±10 Vdc on channel 2.</td>
</tr>
<tr>
<td>TR8</td>
<td>Allows fine setting of the drop resistance value for current to voltage conversion on channel 1.</td>
</tr>
<tr>
<td>TR9</td>
<td>Allows fine setting of the resistance value of voltage divider for input in the ranges ±5 Vdc and ±10 Vdc on channel 1.</td>
</tr>
<tr>
<td>TR10</td>
<td>Allows fine setting of the drop resistance value for current to voltage conversion on channel 0.</td>
</tr>
<tr>
<td>TR11</td>
<td>Allows fine setting of the resistance value of voltage divider for input in the ranges ±5 Vdc and ±10 Vdc on channel 0.</td>
</tr>
</tbody>
</table>

FIGURE 9: TRIMMERS TABLE
The **LAD 415** is subjected to a careful test that verifies and calibrates all the card sections. The calibration is executed in laboratory, with a controlled +20°C room temperature, following these steps:

- **Reference voltages calibration:** first the coarse calibration is performed through trimmer TR3, then the fine calibration of Vref1 (1.6384 Vdc) and Vref2 (25.60 mVdc) is performed respectively through trimmers TR1 and TR2. The A/D reference voltages are calibrated using a 5 digits precision multimeter connected opportune to the test points.

- **Voltage inputs fitting calibration:** a reference signal in the range ±5 Vdc is provided and the value read by the A/D converter section is checked. If such value is not the one expected then the value of resistance in the input voltage divider is set using trimmers TR5, TR7, TR9, TR11. The same procedure is repeated for each of the four sections.

- **Current inputs fitting calibration:** a reference signal in the range 0÷20 mA is provided and the value read by the A/D converter section is checked. If such value is not the one expected then the value of drop resistance for the current input is set using trimmers TR4, TR6, TR8, TR10. The same procedure is repeated for each of the four sections.

- **Trimmers are blocked with paint.**

The analog interfaces use high precision components that are selected during mounting phase to avoid complicate and long calibration procedures. After the calibration, the on board trimmers are blocked with paint to mantain calibration also in presence of mechanic stresses (vibrations, movings, delivery, etc.).

The user most not intervernt on the trimmer settings, however if this should be necessary (example: for time derives) then he/she must follow the above mentioned procedure.

To easily locate the above mentioned components please refer to figure 8; for further information about test points please refer to the previous paragraph; for further information about how to read the A/D converters input voltages please refer to chapter “PERIPHERAL DEVICES SOFTWARE DESCRIPTION”.

RESET

After a reset or a power on the PPI 8255 or PPI 71055 used to drive the A/D converters TSC 850 set all its ports as inputs, while the correct use requires some of the ports to be set as outputs.

Please refer to paragraph “PERIPHERAL DEVICES SOFTWARE DESCRIPTION” for futher information.
TYPE OF ANALOG INPUT SELECTION

LAD 415 board can accept analog voltage and/or current inputs, as described in the previous paragraphs and chapters. The input type selection can be made through a set of comfortable jumpers located near connector CN1. In detail:

<table>
<thead>
<tr>
<th>A/D channel</th>
<th>Input configuration</th>
<th>Jumper Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>as current</td>
<td>J39 C, J40 NC, J41 NC, J42 NC</td>
</tr>
<tr>
<td></td>
<td>as voltage ±10 Vdc</td>
<td>J39 NC, J40 C, J41 NC, J42 NC</td>
</tr>
<tr>
<td></td>
<td>as voltage ±5 Vdc</td>
<td>J39 NC, J40 NC, J41 C, J42 NC</td>
</tr>
<tr>
<td></td>
<td>as voltage ±3.2768 Vdc</td>
<td>J39 NC, J40 NC, J41 NC, J42 C</td>
</tr>
<tr>
<td>1</td>
<td>as current</td>
<td>J35 C, J36 NC, J37 NC, J38 NC</td>
</tr>
<tr>
<td></td>
<td>as voltage ±10 Vdc</td>
<td>J35 NC, J36 C, J37 NC, J38 NC</td>
</tr>
<tr>
<td></td>
<td>as voltage ±5 Vdc</td>
<td>J35 NC, J36 NC, J37 C, J38 NC</td>
</tr>
<tr>
<td></td>
<td>as voltage ±3.2768 Vdc</td>
<td>J35 NC, J36 NC, J37 NC, J38 C</td>
</tr>
<tr>
<td>2</td>
<td>as current</td>
<td>J31 C, J32 NC, J33 NC, J34 NC</td>
</tr>
<tr>
<td></td>
<td>as voltage ±10 Vdc</td>
<td>J31 NC, J32 C, J33 NC, J34 NC</td>
</tr>
<tr>
<td></td>
<td>as voltage ±5 Vdc</td>
<td>J31 NC, J32 NC, J33 C, J34 NC</td>
</tr>
<tr>
<td></td>
<td>as voltage ±3.2768 Vdc</td>
<td>J31 NC, J32 NC, J33 NC, J34 C</td>
</tr>
<tr>
<td>3</td>
<td>as current</td>
<td>J27 C, J28 NC, J29 NC, J30 NC</td>
</tr>
<tr>
<td></td>
<td>as voltage ±10 Vdc</td>
<td>J27 NC, J28 C, J29 NC, J30 NC</td>
</tr>
<tr>
<td></td>
<td>as voltage ±5 Vdc</td>
<td>J27 NC, J28 NC, J29 C, J30 NC</td>
</tr>
<tr>
<td></td>
<td>as voltage ±3.2768 Vdc</td>
<td>J27 NC, J28 NC, J29 NC, J30 C</td>
</tr>
</tbody>
</table>

NOTE

C means Connected; NC means Not Connected

The current-to-voltage drop resistors in series totalize a precision value of **139.00 Ω**, this means that the board can accept as input ranges 4÷20 mA or 0÷20 mA corresponding to the positive first 32768 of the A/D converter resolution.

Any eventual configuration out of this standard should be asked directly to grifo®.

For further information please refer to paragraph “TRIMMERS AND CALIBRATION”.

CONVERSION SPEED SELECTION

Conversion speed of **LAD 415** can be set independently for each of the four A/D converter sections. The speed can be selected amongst the four choices shown below. The possibility to select independently the conversion speeds allows to optimize the board resources utilization, according to the needs of the user application, to fulfill any of the board usage requirements.
Possible conversion speeds are:

- 200 ms which means 5 conversions per second
- 100 ms which means 10 conversions per second
- 50 ms which means 20 conversions per second
- 25 ms which means 40 conversions per second

Speed selection is performed through hardware by setting correctly the specific jumpers, as described here below:

<table>
<thead>
<tr>
<th>A/D channel</th>
<th>Speed</th>
<th>Jumper Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200 ms</td>
<td>J3 C, J4 NC, J5 NC, J6 NC, J11 in position 1-5</td>
</tr>
<tr>
<td></td>
<td>100 ms</td>
<td>J3 NC, J4 C, J5 NC, J6 NC, J11 in position 2-6</td>
</tr>
<tr>
<td></td>
<td>50 ms</td>
<td>J3 NC, J4 NC, J5 C, J6 NC, J11 in position 3-7</td>
</tr>
<tr>
<td></td>
<td>25 ms</td>
<td>J3 NC, J4 NC, J5 NC, J6 C, J11 in position 4-8</td>
</tr>
<tr>
<td>1</td>
<td>200 ms</td>
<td>J15 C, J16 NC, J17 NC, J18 NC, J12 in position 1-5</td>
</tr>
<tr>
<td></td>
<td>100 ms</td>
<td>J15 NC, J16 C, J17 NC, J18 NC, J12 in position 2-6</td>
</tr>
<tr>
<td></td>
<td>50 ms</td>
<td>J15 NC, J16 NC, J17 C, J18 NC, J12 in position 3-7</td>
</tr>
<tr>
<td></td>
<td>25 ms</td>
<td>J15 NC, J16 NC, J17 NC, J18 C, J12 in position 4-8</td>
</tr>
<tr>
<td>2</td>
<td>200 ms</td>
<td>J7 C, J8 NC, J9 NC, J10 NC, J13 in position 1-5</td>
</tr>
<tr>
<td></td>
<td>100 ms</td>
<td>J7 NC, J8 C, J9 NC, J10 NC, J13 in position 2-6</td>
</tr>
<tr>
<td></td>
<td>50 ms</td>
<td>J7 NC, J8 NC, J9 C, J10 NC, J13 in position 3-7</td>
</tr>
<tr>
<td></td>
<td>25 ms</td>
<td>J7 NC, J8 NC, J9 NC, J10 C, J13 in position 4-8</td>
</tr>
<tr>
<td>3</td>
<td>200 ms</td>
<td>J19 C, J20 NC, J21 NC, J22 NC, J14 in position 1-5</td>
</tr>
<tr>
<td></td>
<td>100 ms</td>
<td>J19 NC, J20 C, J21 NC, J22 NC, J14 in position 2-6</td>
</tr>
<tr>
<td></td>
<td>50 ms</td>
<td>J19 NC, J20 NC, J21 C, J22 NC, J14 in position 3-7</td>
</tr>
<tr>
<td></td>
<td>25 ms</td>
<td>J19 NC, J20 NC, J21 NC, J22 C, J14 in position 4-8</td>
</tr>
</tbody>
</table>

NOTE
C means Connected; NC means Not Connected
JUMPERs

On **LAD 415** board there are 44 jumpers for card configuration. The unusually high number of jumpers is due to the possibility to configure both conversion speed and analog input range independently for each of the four A/D converter sections. It is easy for the user to configure the board because most jumpers can be gathered in four groups featuring the same functionalities for each of the four A/D converter sections. Below there is the jumpers list, location and function.

<table>
<thead>
<tr>
<th>JUMPERS</th>
<th>N. PINS</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>2</td>
<td>Select addressing mode 256 or 512 byte</td>
</tr>
<tr>
<td>J2</td>
<td>2</td>
<td>Connects signal /M1 to interfacement and addressing section</td>
</tr>
<tr>
<td>J3</td>
<td>2</td>
<td>Selects integration capacitor for channel 0 suitable for 5 conversions per second</td>
</tr>
<tr>
<td>J4</td>
<td>2</td>
<td>Selects integration capacitor for channel 0 suitable for 10 conversions per second</td>
</tr>
<tr>
<td>J5</td>
<td>2</td>
<td>Selects integration capacitor for channel 0 suitable for 20 conversions per second</td>
</tr>
<tr>
<td>J6</td>
<td>2</td>
<td>Selects integration capacitor for channel 0 suitable for 40 conversions per second</td>
</tr>
<tr>
<td>J7</td>
<td>2</td>
<td>Selects integration capacitor for channel 2 suitable for 5 conversions per second</td>
</tr>
<tr>
<td>J8</td>
<td>2</td>
<td>Selects integration capacitor for channel 2 suitable for 10 conversions per second</td>
</tr>
<tr>
<td>J9</td>
<td>2</td>
<td>Selects integration capacitor for channel 2 suitable for 20 conversions per second</td>
</tr>
<tr>
<td>J10</td>
<td>2</td>
<td>Selects integration capacitor for channel 2 suitable for 40 conversions per second</td>
</tr>
<tr>
<td>J11</td>
<td>8</td>
<td>Selects conversion speed for channel 0</td>
</tr>
<tr>
<td>J12</td>
<td>8</td>
<td>Selects conversion speed for channel 1</td>
</tr>
<tr>
<td>J13</td>
<td>8</td>
<td>Selects conversion speed for channel 2</td>
</tr>
<tr>
<td>J14</td>
<td>8</td>
<td>Selects conversion speed for channel 3</td>
</tr>
</tbody>
</table>

Figure 10: Jumper summarizing table (Part 1)
<table>
<thead>
<tr>
<th>JUMPERS</th>
<th>N. PINS</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>J15</td>
<td>2</td>
<td>Selects integration capacitor for channel 1 suitable for 5 conversions per second</td>
</tr>
<tr>
<td>J16</td>
<td>2</td>
<td>Selects integration capacitor for channel 1 suitable for 10 conversions per second</td>
</tr>
<tr>
<td>J17</td>
<td>2</td>
<td>Selects integration capacitor for channel 1 suitable for 20 conversions per second</td>
</tr>
<tr>
<td>J18</td>
<td>2</td>
<td>Selects integration capacitor for channel 1 suitable for 40 conversions per second</td>
</tr>
<tr>
<td>J19</td>
<td>2</td>
<td>Selects integration capacitor for channel 3 suitable for 5 conversions per second</td>
</tr>
<tr>
<td>J20</td>
<td>2</td>
<td>Selects integration capacitor for channel 3 suitable for 10 conversions per second</td>
</tr>
<tr>
<td>J21</td>
<td>2</td>
<td>Selects integration capacitor for channel 3 suitable for 20 conversions per second</td>
</tr>
<tr>
<td>J22</td>
<td>3</td>
<td>Selects integration capacitor for channel 3 suitable for 40 conversions per second</td>
</tr>
<tr>
<td>J23</td>
<td>3</td>
<td>Connects to interfacement and addressing section the interrupt request coming from channel 0</td>
</tr>
<tr>
<td>J24</td>
<td>3</td>
<td>Connects to interfacement and addressing section the interrupt request coming from channel 1</td>
</tr>
<tr>
<td>J25</td>
<td>3</td>
<td>Connects to interfacement and addressing section the interrupt request coming from channel 2</td>
</tr>
<tr>
<td>J26</td>
<td>2</td>
<td>Connects to interfacement and addressing section the interrupt request coming from channel 3</td>
</tr>
<tr>
<td>J27</td>
<td>2</td>
<td>Selects current input for channel 3</td>
</tr>
<tr>
<td>J28</td>
<td>2</td>
<td>Selects voltage input for channel 3 in the range ±10 Vdc</td>
</tr>
<tr>
<td>J29</td>
<td>2</td>
<td>Selects voltage input for channel 3 in the range ±5 Vdc</td>
</tr>
<tr>
<td>J30</td>
<td>2</td>
<td>Selects voltage input for channel 3 in the range ±3.2768 Vdc</td>
</tr>
<tr>
<td>J31</td>
<td>2</td>
<td>Selects current input for channel 2</td>
</tr>
<tr>
<td>J32</td>
<td>2</td>
<td>Selects voltage input for channel 2 in the range ±10 Vdc</td>
</tr>
<tr>
<td>J33</td>
<td>2</td>
<td>Selects voltage input for channel 2 in the range ±5 Vdc</td>
</tr>
<tr>
<td>J34</td>
<td>2</td>
<td>Selects voltage input for channel 2 in the range ±3.2768 Vdc</td>
</tr>
</tbody>
</table>

Figure 11: Jumpers summarizing table (part 2)
Figure 12: Jumpers Location (Part 1)
Table: JUMPERS SUMMARIZING TABLE (PART 3)

<table>
<thead>
<tr>
<th>JUMPERS</th>
<th>N. PINS</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>J35</td>
<td>2</td>
<td>Selects current input for channel 1</td>
</tr>
<tr>
<td>J36</td>
<td>2</td>
<td>Selects voltage input for channel 1 in the range range ±10 Vdc</td>
</tr>
<tr>
<td>J37</td>
<td>2</td>
<td>Selects voltage input for channel 1 in the range range ±5 Vdc</td>
</tr>
<tr>
<td>J38</td>
<td>2</td>
<td>Selects voltage input for channel 1 in the range range ±3.2768 Vdc</td>
</tr>
<tr>
<td>J39</td>
<td>2</td>
<td>Selects current input for channel 0</td>
</tr>
<tr>
<td>J40</td>
<td>2</td>
<td>Selects voltage input for channel 0 in the range range ±10 Vdc</td>
</tr>
<tr>
<td>J41</td>
<td>2</td>
<td>Selects voltage input for channel 0 in the range range ±5 Vdc</td>
</tr>
<tr>
<td>J42</td>
<td>2</td>
<td>Selects voltage input for channel 0 in the range range ±3.2768 Vdc</td>
</tr>
<tr>
<td>J43</td>
<td>2</td>
<td>Connects metallic shield to supply GND</td>
</tr>
<tr>
<td>J44</td>
<td>2</td>
<td>Connects CN1 pin 5 di CN1 to supply GND</td>
</tr>
</tbody>
</table>

FIGURE 13: JUMPERS SUMMARIZING TABLE (PART 3)

The following tables describe all the right connections of **LDA 415** jumpers with their relative functions. To recognize these valid connections, please refer to the board printed diagram (serigraph) or to figure 2 of this manual, where the pins numeration is listed; for recognizing jumpers location, please refer to figures 12 and 14.

The "*" used in the following tables, denotes the default connection, or on the other hand the connection set up at the end of testing phase, that is the configuration the User receives.
FIGURE 14: JUMPERS LOCATION (PART 2)
2 PINS JUMPERS

<table>
<thead>
<tr>
<th>JUMPERS</th>
<th>CONNECTION</th>
<th>PURPOSE</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>not connected</td>
<td>Selects 256 byte of addressing space.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects 512 byte of addressing space.</td>
<td>*</td>
</tr>
<tr>
<td>J2</td>
<td>not connected</td>
<td>Interfacing and addressing section does not manage signal /M1 from ABACO® BUS.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Interfacing and addressing section manages signal /M1 from ABACO® BUS.</td>
<td>*</td>
</tr>
<tr>
<td>J3</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 5 conversions/second on channel 0.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 5 conversions/second on channel 0.</td>
<td>*</td>
</tr>
<tr>
<td>J4</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 10 conversions/second on channel 0.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 10 conversions/second on channel 0.</td>
<td>*</td>
</tr>
<tr>
<td>J5</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 20 conversions/second on channel 0.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 20 conversions/second on channel 0.</td>
<td>*</td>
</tr>
<tr>
<td>J6</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 40 conversions/second on channel 0.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 40 conversions/second on channel 0.</td>
<td>*</td>
</tr>
<tr>
<td>J7</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 5 conversions/second on channel 2.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 5 conversions/second on channel 2.</td>
<td>*</td>
</tr>
<tr>
<td>J8</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 10 conversions/second on channel 2.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 10 conversions/second on channel 2.</td>
<td>*</td>
</tr>
</tbody>
</table>

Figure 15: 2 PINS JUMPERS table (part 1)
<table>
<thead>
<tr>
<th>JUMPERS</th>
<th>CONNECTION</th>
<th>PURPOSE</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J9</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 20 conversions/second on channel 2.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 20 conversions/second on channel 2.</td>
<td></td>
</tr>
<tr>
<td>J10</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 40 conversions/second on channel 2.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 40 conversions/second on channel 2.</td>
<td></td>
</tr>
<tr>
<td>J15</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 5 conversions/second on channel 1.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 5 conversions/second on channel 1.</td>
<td></td>
</tr>
<tr>
<td>J16</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 10 conversions/second on channel 1.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 10 conversions/second on channel 1.</td>
<td></td>
</tr>
<tr>
<td>J17</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 20 conversions/second on channel 1.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 20 conversions/second on channel 1.</td>
<td></td>
</tr>
<tr>
<td>J18</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 40 conversions/second on channel 1.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 40 conversions/second on channel 1.</td>
<td></td>
</tr>
<tr>
<td>J19</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 5 conversions/second on channel 3.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 5 conversions/second on channel 3.</td>
<td></td>
</tr>
<tr>
<td>J20</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 10 conversions/second on channel 3.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 10 conversions/second on channel 3.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 16: 2 pins jumpers table (part 2)
<table>
<thead>
<tr>
<th>JUMPERS</th>
<th>CONNECTION</th>
<th>PURPOSE</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J21</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 20 conversions/second on channel 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 20 conversions/second on channel 3.</td>
<td>*</td>
</tr>
<tr>
<td>J22</td>
<td>not connected</td>
<td>Does not select the integration capacitor suitable for 40 conversions/second on channel 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects the integration capacitor suitable for 40 conversions/second on channel 3.</td>
<td>*</td>
</tr>
<tr>
<td>J27</td>
<td>not connected</td>
<td>Does not select input as current input for channel 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects input as current input for channel 3.</td>
<td>*</td>
</tr>
<tr>
<td>J28</td>
<td>not connected</td>
<td>Does not select voltage input for channel 3 in the range ±10 Vdc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects voltage input for channel 3 in the range ±10 Vdc.</td>
<td>*</td>
</tr>
<tr>
<td>J29</td>
<td>not connected</td>
<td>Does not select voltage input for channel 3 in the range ±5 Vdc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects voltage input for channel 3 in the range ±5 Vdc.</td>
<td>*</td>
</tr>
<tr>
<td>J30</td>
<td>not connected</td>
<td>Does not select voltage input for channel 3 in the range ±3.2768 Vdc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects voltage input for channel 3 in the range ±3.2768 Vdc.</td>
<td>*</td>
</tr>
<tr>
<td>J31</td>
<td>not connected</td>
<td>Does not select input as current input for channel 2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects input as current input for channel 2.</td>
<td>*</td>
</tr>
<tr>
<td>J32</td>
<td>not connected</td>
<td>Does not select voltage input for channel 2 in the range ±10 Vdc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects voltage input for channel 2 in the range ±10 Vdc.</td>
<td>*</td>
</tr>
<tr>
<td>J33</td>
<td>not connected</td>
<td>Does not select voltage input for channel 2 in the range ±5 Vdc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects voltage input for channel 2 in the range ±5 Vdc.</td>
<td>*</td>
</tr>
</tbody>
</table>

Figure 17: 2 Pins Jumper Table (Part 3)
<table>
<thead>
<tr>
<th>JUMPERS</th>
<th>CONNECTION</th>
<th>PURPOSE</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J34</td>
<td>not connected</td>
<td>Does not select voltage input for channel 2 in the range ±3.2768 Vdc.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects voltage input for channel 2 in the range ±3.2768 Vdc.</td>
<td></td>
</tr>
<tr>
<td>J35</td>
<td>not connected</td>
<td>Does not select input as current input for channel 1.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects input as current input for channel 1.</td>
<td></td>
</tr>
<tr>
<td>J36</td>
<td>not connected</td>
<td>Does not select voltage input for channel 1 in the range ±10 Vdc.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects voltage input for channel 1 in the range ±10 Vdc.</td>
<td></td>
</tr>
<tr>
<td>J37</td>
<td>not connected</td>
<td>Does not select voltage input for channel 1 in the range ±5 Vdc.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects voltage input for channel 1 in the range ±5 Vdc.</td>
<td></td>
</tr>
<tr>
<td>J38</td>
<td>not connected</td>
<td>Does not select voltage input for channel 1 in the range ±3.2768 Vdc.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects voltage input for channel 1 in the range ±3.2768 Vdc.</td>
<td></td>
</tr>
<tr>
<td>J39</td>
<td>not connected</td>
<td>Does not select input as current input for channel 0.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects input as current input for channel 0.</td>
<td></td>
</tr>
<tr>
<td>J40</td>
<td>not connected</td>
<td>Does not select voltage input for channel 0 in the range ±10 Vdc.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects voltage input for channel 0 in the range ±10 Vdc.</td>
<td></td>
</tr>
<tr>
<td>J41</td>
<td>not connected</td>
<td>Does not select voltage input for channel 0 in the range ±5 Vdc.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects voltage input for channel 0 in the range ±5 Vdc.</td>
<td></td>
</tr>
<tr>
<td>J42</td>
<td>not connected</td>
<td>Does not select voltage input for channel 0 in the range ±3.2768 Vdc.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Selects voltage input for channel 0 in the range ±3.2768 Vdc.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 18: 2 pins jumpers table (Part 4)
3 PINS JUMPERS

<table>
<thead>
<tr>
<th>JUMPERS</th>
<th>CONNECTION</th>
<th>PURPOSE</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J23</td>
<td>position 1-2</td>
<td>Connects channel 0 end conversion interrupt generation circuitry to interfacing and addressing section.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Does not connect channel 0 end conversion interrupt generation circuitry to interfacing and addressing section.</td>
<td>*</td>
</tr>
<tr>
<td>J24</td>
<td>position 1-2</td>
<td>Connects channel 1 end conversion interrupt generation circuitry to interfacing and addressing section.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Does not connect channel 1 end conversion interrupt generation circuitry to interfacing and addressing section.</td>
<td>*</td>
</tr>
<tr>
<td>J25</td>
<td>position 1-2</td>
<td>Connects channel 2 end conversion interrupt generation circuitry to interfacing and addressing section.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Does not connect channel 2 end conversion interrupt generation circuitry to interfacing and addressing section.</td>
<td>*</td>
</tr>
<tr>
<td>J26</td>
<td>position 1-2</td>
<td>Connects channel 3 end conversion interrupt generation circuitry to interfacing and addressing section.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Does not connect channel 3 end conversion interrupt generation circuitry to interfacing and addressing section.</td>
<td>*</td>
</tr>
</tbody>
</table>
8 PINS JUMPERS

<table>
<thead>
<tr>
<th>JUMPERS</th>
<th>CONNECTION</th>
<th>PURPOSE</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J11</td>
<td>position 1-5</td>
<td>Selects a conversion speed of 5 conversions per second for channel 0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>position 2-6</td>
<td>Selects a conversion speed of 10 conversions per second for channel 0.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 3-7</td>
<td>Selects a conversion speed of 20 conversions per second for channel 0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>position 4-8</td>
<td>Selects a conversion speed of 40 conversions per second for channel 0.</td>
<td></td>
</tr>
<tr>
<td>J12</td>
<td>position 1-5</td>
<td>Selects a conversion speed of 5 conversions per second for channel 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>position 2-6</td>
<td>Selects a conversion speed of 10 conversions per second for channel 1.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 3-7</td>
<td>Selects a conversion speed of 20 conversions per second for channel 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>position 4-8</td>
<td>Selects a conversion speed of 40 conversions per second for channel 1.</td>
<td></td>
</tr>
<tr>
<td>J13</td>
<td>position 1-5</td>
<td>Selects a conversion speed of 5 conversions per second for channel 2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>position 2-6</td>
<td>Selects a conversion speed of 10 conversions per second for channel 2.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 3-7</td>
<td>Selects a conversion speed of 20 conversions per second for channel 2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>position 4-8</td>
<td>Selects a conversion speed of 40 conversions per second for channel 2.</td>
<td></td>
</tr>
<tr>
<td>J14</td>
<td>position 1-5</td>
<td>Selects a conversion speed of 5 conversions per second for channel 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>position 2-6</td>
<td>Selects a conversion speed of 10 conversions per second for channel 3.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 3-7</td>
<td>Selects a conversion speed of 20 conversions per second for channel 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>position 4-8</td>
<td>Selects a conversion speed of 40 conversions per second for channel 3.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 21: 8 PINS JUMPERS table

The "*" used in the following tables, denotes the default connection, or on the other hand the connection set up at the end of testing phase, that is the configuration the User receives.
HARDWARE DESCRIPTION

This chapter provides all the hardware informations needed to use LAD 415 board. Here the user will find information about I/O card mapping and on board peripheral devices addressing.

BOARD MAPPING

LAD 415 board is mapped into a 4 bytes I/O addressing space, that can be mapped starting from different base addresses according to how the board is configured. This feature allows to use several LAD 415 cards on the same ABACO® BUS, or to install them on a BUS where other peripheral modules are installed obtaining a structure that can be expanded without any difficulty or modifications to the application software.

The base address can be defined through the specific BUS interface circuitry on the board itself; this circuitry uses the eight pins dip switch called DIP1, from which it reads the address set by the user. Here follows the correspondence between dips configuration and address signals.

- DIP1.1 -> Address A8
- DIP1.2 -> Not Used
- DIP1.3 -> Address A2
- DIP1.4 -> Address A3
- DIP1.5 -> Address A4
- DIP1.6 -> Address A5
- DIP1.7 -> Address A6
- DIP1.8 -> Address A7

These dips are driven in complemented logic, this means that if a switch is ON generates a logic zero, viceversa if a switch is OFF generates a logic one.

Jumper J1, as previously described, selects the addressing range for card mapping. If the 256 bytes addressing range is selected (addresses from 00H to FFH) then DIP1.1 must be OFF to address the board correctly, while if the 512 bytes addressing range is selected (addresses from 00H to 1FFH) then DIP1.1 is used to compose the board address.

Also jumper J2 affects the addressing logic, as described before, and must be set according to the type of GPC® control card used. In detail, if the control card is provided with /M1 signal on the ABACO® BUS then jumper J2 must be connected, and viceversa.

NOTE

When allocating the mapping address of the boards, please be careful not to allocate more than one device in the same addressing space (count also the number of bytes occupied by the card). If this condition will not be respected, a BUS conflict will happen; such conflict will compromise the correct working of the whole system.
As an example, some possible mappings are reported here.

1) Address used to map LAD 415: 040H
 Control board used: /M1 signal connected

 Jumper J1 -> Not Connected
 Jumper J2 -> Connected

 DIP1.1 -> OFF
 DIP1.2 -> Don't care
 DIP1.3 -> ON
 DIP1.4 -> ON
 DIP1.5 -> ON
 DIP1.6 -> ON
 DIP1.7 -> OFF
 DIP1.8 -> ON

2) Address used to map LAD 415: 184H
 Control board used: /M1 signal not connected

 Jumper J1 -> Connected
 Jumper J2 -> Not Connected

 DIP1.1 -> OFF
 DIP1.2 -> Don't care
 DIP1.3 -> OFF
 DIP1.4 -> ON
 DIP1.5 -> ON
 DIP1.6 -> ON
 DIP1.7 -> ON
 DIP1.8 -> OFF

To easily locate jumpers and dip switches please refer to figures 5, 12 and 14.
INTERNAL REGISTERS ADDRESSING

Indicating the board base address with `<baseaddr>`, that is the address set using dip switch DIP1, as indicated in the previous paragraph LAD 415 internal registers are addressable as explained in the following table.

<table>
<thead>
<tr>
<th>REGISTER</th>
<th>ADDRESS</th>
<th>R/W</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td><baseaddr>+00</td>
<td>R</td>
<td>PPI 8255 port A data register</td>
</tr>
<tr>
<td>PB</td>
<td><baseaddr>+01</td>
<td>W</td>
<td>PPI 8255 port B data register</td>
</tr>
<tr>
<td>PC</td>
<td><baseaddr>+02</td>
<td>R/W</td>
<td>PPI 8255 port C data register</td>
</tr>
<tr>
<td>ST</td>
<td><baseaddr>+03</td>
<td>W</td>
<td>PPI 8255 control register</td>
</tr>
</tbody>
</table>

NOTE

When allocating the mapping address of the boards, please be careful not to allocate more than one device in the same addressing space (count also the number of bytes occupied by the card). If this condition will not be respected, a BUS conflict will happen; such conflict will compromise the correct working of the whole system.
PERIPHERAL DEVICES SOFTWARE DESCRIPTION

In the previous paragraph allocation addresses of all the peripherals have been reported, here follows a detailed description of function and meaning of internal registers (please always refer to the peripheral mapping tables to understand completely the following informations). Should the present documentation be inadequate please refer to the component's manufacturer documentation.

In the following paragraphs the indications D0÷D7 or D0÷D15 are used to refer the bits of the byte or word involved in the I/O operations.

PPI 82C55/71055

PPI 82C55 or PPI 71055 is used to manage the control logic of the four A/D converter sections. Here follows a description of PPI82C55 or PPI71055 registers (please see "INTERNAL REGISTERS ADDRESSING" for registers addresses) and how they can be programmed.

This external peripheral device is managed through 4 registers: one status register (ST) and three data registers (PA, PB, PC). The data registers are available both for input operation (to obtain signal status) and for output operation (to set signal status). PPI 82C55/71055 can work in three modes:

- **MODE 0** = it provides two 8 bits bidirectional ports (A, B) and two 4 bits bidirectional ports (C LOW, C HIGH); output signals are latched and input signals are not latched; no handshake signals are provided.

- **MODE 1** = it provides two 12 bits ports (A+C LOW and B+C HIGH) where ports A and B are used as 8 I/O lines and port C are used as 4 handshake lines. Both inputs and outputs are latched.

- **MODE 2** = it provides a 13 bits port (A+C3÷7) where port A is used as 8 I/O lines and the 5 bits of port C are used as handshake, and a 11 bits port (B+C0÷2) where port B is used as 8 I/O lines and the 3 bits of port C are used as handshakes. Both inputs and outputs are latched.

The device is programmed writing an 8 bits word in the status register CNT, with the following bits meaning:

CNT = SF M1 M2 A CH M3 B CL

where:

- SF = mode Set Flag: if actived (1) the device is enabled for standard I/O operation
- M1 M2 = mode selection:
 - 0 0 = mode 0
 - 0 1 = mode 1
 - 1 X = mode 2
- A = port A direction: 1=input; 0=output
- CH = port C HIGH direction: 1=input; 0=output
- M3 = mode selection: 1=mode 1; 0=mode 0
- B = port B direction: 1=input; 0=output
- CL = port C LOW direction: 1=input; 0=output

After Reset or power on PPI 82C55/71055 is programmed in mode 0 with all three ports in input; in this way any connection of PPI 82C55/71055 signals can be used without conflict problems.
CONVERSION MANAGEMENT

The whole board software management is performed through a circuitry that allows, easily and efficiently, to manage the four A/D converter sections. Such circuitry, called control logic, is based on one PPI 82C55/71055, device that features 24 digital I/O lines and allows to control comfortably each one of the four A/D converter sections separately, minimizing the number of bytes occupied in the addressing space. For a detailed description of such component please refer to paragraph “PPI 82C55/71055” and to manufacturer documentation, while to know the allocation of its registers please refer to paragraph “INTERNAL REGISTERS ADDRESSING”. In simple words, PPI 82C55/71055 is a parallel port device featuring 24 TTL I/O signals divided in three ports (Port A, Port B, Port C). Directionality is byte level settable by software. Here follows the correspondence between port signal and their connections to board devices:

<table>
<thead>
<tr>
<th>Port Signal (PA)</th>
<th>Connection to Board Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA.0</td>
<td>DB0</td>
</tr>
<tr>
<td>PA.1</td>
<td>DB1</td>
</tr>
<tr>
<td>PA.2</td>
<td>DB2</td>
</tr>
<tr>
<td>PA.3</td>
<td>DB3</td>
</tr>
<tr>
<td>PA.4</td>
<td>DB4</td>
</tr>
<tr>
<td>PA.5</td>
<td>DB5</td>
</tr>
<tr>
<td>PA.6</td>
<td>DB6</td>
</tr>
<tr>
<td>PA.7</td>
<td>DB7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port Signal (PB)</th>
<th>Connection to Board Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB.0</td>
<td>CONT /DEM CH0</td>
</tr>
<tr>
<td>PB.1</td>
<td>CONT /DEM CH1</td>
</tr>
<tr>
<td>PB.2</td>
<td>CONT /DEM CH2</td>
</tr>
<tr>
<td>PB.3</td>
<td>CONT /DEM CH3</td>
</tr>
<tr>
<td>PB.4</td>
<td>L /H</td>
</tr>
<tr>
<td>PB.5</td>
<td>OVR /POL</td>
</tr>
<tr>
<td>PB.6</td>
<td>/RD</td>
</tr>
<tr>
<td>PB.7</td>
<td>/WR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port Signal (PC)</th>
<th>Connection to Board Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC.0</td>
<td>BUSY CH0</td>
</tr>
<tr>
<td>PC.1</td>
<td>BUSY CH1</td>
</tr>
<tr>
<td>PC.2</td>
<td>BUSY CH2</td>
</tr>
<tr>
<td>PC.3</td>
<td>BUSY CH3</td>
</tr>
<tr>
<td>PC.4</td>
<td>CE0</td>
</tr>
<tr>
<td>PC.5</td>
<td>CE1</td>
</tr>
<tr>
<td>PC.6</td>
<td>CE2</td>
</tr>
<tr>
<td>PC.7</td>
<td>LD1</td>
</tr>
</tbody>
</table>

where:

DB0-DB7= I - Data BUS of the 4 A/D sections

CONT /DEM CHn= O - Selects the conversion modality for n-th A/D converter section:
CONT /DEM=0 - conversion on request
CONT /DEM=1 - conversion continuously
L /H= O - Selects which conversion byte to put to the data BUS:
L /H=0 -> high byte (most significant byte or MSB)
L /H=1 -> low byte (least significant byte or LSB)

OVR /POL= O - Selects the function of bit DB7 during high byte reading.
OVR /POL=0 -> DB7 is the sign of conversion value
 DB7=0 -> negative tension
 DB7=1 -> positive tension
OVR /POL=1 -> DB7 indicates whether the tension if out of range
 DB7=0 -> tension in range
 DB7=1 -> tension out of range

/RD= O - Sets the request for a read operation from selected A/D converter.

/WR= O - Sets the request for a conversion from selected A/D converter.

BUSY CH n= I - The n-th A/D converter section indicates the conversion end to
 control and interrupt generation logic.
 BUSY=0 -> conversion finished
 BUSY=1 -> conversion in progress

CE2 CE1 CE0= O - Select which A/D converter section to enable:
 0 0 1 -> select section 0 di A/D, activating its /CE
 0 1 0 -> select section 1 di A/D, activating its /CE
 0 1 1 -> select section 2 di A/D, activating its /CE
 1 0 0 -> select section 3 di A/D, activating its /CE

LD1= O - Manages the activity LED LD1:
 LD1=0 -> Turns LED ON
 LD1=1 -> Turns LED OFF

NOTE
The direction of the above described signals should be considered as output (O) from the control logic
so input for the A/D converter sections and, viceversa, input (I) for the control logic so output from
the A/D converter sections.
A conversion operation is made with three phases: conversion start, wait for conversion end, reading
of conversion result. The management is performed completely by software setting and reading the
A/D converter signals through PPI 82C55/71055ports.
Here follows a detailed description of the several conversion phases, including clear indications of
what the control logic must do in each phase.
For greater evidence conversion on request and conversion continuously are described separately,
in fact the two conversion modes require different actions.
CONVERSION ON REQUEST

In this modality the conversion starts when the control software performs a conversion start procedure. When the conversion ends the board is ready to let the control card read the conversion value and keeps this status until another conversion is started. The phases of this conversion are:

1R) Initialization of control logic PPI 82C55/71055 in mode 0 with port A as input, port B as output, port C LOW as input and port C HIGH as output;

2R) Setting port B to select as conversion mode on the selected channel the “Conversion on request”:

<table>
<thead>
<tr>
<th>Port</th>
<th>Logic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONT /DEM CH0</td>
<td>PB.0</td>
<td>logic 0 if channel 0 in “on request” mode and viceversa</td>
</tr>
<tr>
<td>CONT /DEM CH1</td>
<td>PB.1</td>
<td>logic 0 if channel 1 in “on request” mode and viceversa</td>
</tr>
<tr>
<td>CONT /DEM CH2</td>
<td>PB.2</td>
<td>logic 0 if channel 2 in “on request” mode and viceversa</td>
</tr>
<tr>
<td>CONT /DEM CH3</td>
<td>PB.3</td>
<td>logic 0 if channel 3 in “on request” mode and viceversa</td>
</tr>
<tr>
<td>L /H</td>
<td>PB.4</td>
<td>Indifferent</td>
</tr>
<tr>
<td>OVR /POL</td>
<td>PB.5</td>
<td>Indifferent</td>
</tr>
<tr>
<td>/RD</td>
<td>PB.6</td>
<td>logic 1</td>
</tr>
<tr>
<td>/WR</td>
<td>PB.7</td>
<td>logic 1</td>
</tr>
</tbody>
</table>

3R) Wait for BUSY signal to disengage, which indicates that it is possible to start the conversion:

Wait for:

<table>
<thead>
<tr>
<th>Port</th>
<th>Logic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSY CH0</td>
<td>PC.0</td>
<td>0 if channel 0 selected, viceversa indifferent</td>
</tr>
<tr>
<td>BUSY CH1</td>
<td>PC.1</td>
<td>0 if channel 1 selected, viceversa indifferent</td>
</tr>
<tr>
<td>BUSY CH2</td>
<td>PC.2</td>
<td>0 if channel 2 selected, viceversa indifferent</td>
</tr>
<tr>
<td>BUSY CH3</td>
<td>PC.3</td>
<td>0 if channel 3 selected, viceversa indifferent</td>
</tr>
<tr>
<td>CE2</td>
<td>PC.4</td>
<td>Indifferent</td>
</tr>
<tr>
<td>CE1</td>
<td>PC.5</td>
<td>Indifferent</td>
</tr>
<tr>
<td>CE0</td>
<td>PC.6</td>
<td>Indifferent</td>
</tr>
<tr>
<td>LD1</td>
<td>PC.7</td>
<td>Indifferent</td>
</tr>
</tbody>
</table>

4R) Abilitation of A/D converter section where to perform the conversion:

<table>
<thead>
<tr>
<th>Port</th>
<th>Logic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSY CH0</td>
<td>PC.0</td>
<td>Indifferent</td>
</tr>
<tr>
<td>BUSY CH1</td>
<td>PC.1</td>
<td>Indifferent</td>
</tr>
<tr>
<td>BUSY CH2</td>
<td>PC.2</td>
<td>Indifferent</td>
</tr>
<tr>
<td>BUSY CH3</td>
<td>PC.3</td>
<td>Indifferent</td>
</tr>
<tr>
<td>CE2</td>
<td>PC.5</td>
<td>Abilitation and conversion for channel 0</td>
</tr>
<tr>
<td>CE1</td>
<td>PC.6</td>
<td>Abilitation and conversion for channel 1</td>
</tr>
<tr>
<td>CE0</td>
<td>PC.7</td>
<td>Abilitation and conversion for channel 2</td>
</tr>
<tr>
<td>PC.6</td>
<td>0</td>
<td>Abilitation and conversion for channel 3</td>
</tr>
<tr>
<td>PC.5</td>
<td>1</td>
<td>Indifferent</td>
</tr>
<tr>
<td>PC.4</td>
<td>1</td>
<td>Indifferent</td>
</tr>
<tr>
<td>LD1</td>
<td>1</td>
<td>Indifferent</td>
</tr>
</tbody>
</table>
5R) Conversion starts if /WR if kept to logic level 0 for at least 2µs:

- CONT /DEM CH0 = PB.0 = logic 0 if channel 0 in “on request” mode and viceversa
- CONT /DEM CH1 = PB.1 = logic 0 if channel 1 in “on request” mode and viceversa
- CONT /DEM CH2 = PB.2 = logic 0 if channel 2 in “on request” mode and viceversa
- CONT /DEM CH3 = PB.3 = logic 0 if channel 3 in “on request” mode and viceversa
- L/H = PB.4 = Indifferent
- OVR /POL = PB.5 = Indifferent
- /RD = PB.6 = logic 1
- /WR = PB.7 = logic 0 for at least 2µs then logic 1

6R) Delay to wait for conversion to start. This phase has a variable duration according to the conversion speed selected, it terminates when signal BUSY becomes a logic 1. No operation must be performed to LAD 415 in this phase.

Wait for:
- BUSY CH0 = PC.0 = logic 1 if channel 0 selected, viceversa indifferent
- BUSY CH1 = PC.1 = logic 1 if channel 1 selected, viceversa indifferent
- BUSY CH2 = PC.2 = logic 1 if channel 2 selected, viceversa indifferent
- BUSY CH3 = PC.3 = logic 1 if channel 3 selected, viceversa indifferent
- CE2 = PC.4 = Indifferent
- CE1 = PC.5 = Indifferent
- CE0 = PC.6 = Indifferent
- LD1 = PC.7 = Indifferent

7R) Wait for conversion end for selected channel through polling on signal BUSY or interrupt. In any case it is essential to exit from this phase, and continue with other phases, only when signal BUSY is disengaged.

Wait for:
- BUSY CH0 = PC.0 = logic 0 if channel 0 selected, viceversa indifferent
- BUSY CH1 = PC.1 = logic 0 if channel 1 selected, viceversa indifferent
- BUSY CH2 = PC.2 = logic 0 if channel 2 selected, viceversa indifferent
- BUSY CH3 = PC.3 = logic 0 if channel 3 selected, viceversa indifferent
- CE2 = PC.4 = Indifferent
- CE1 = PC.5 = Indifferent
- CE0 = PC.6 = Indifferent
- LD1 = PC.7 = Indifferent

8R) Disabling the section that completed the conversion:

- BUSY CH0 = PC.0 = Indifferent
- BUSY CH1 = PC.1 = Indifferent
- BUSY CH2 = PC.2 = Indifferent
- BUSY CH3 = PC.3 = Indifferent
9R) Re-enabling the A/D converter section that completed the conversion:

<table>
<thead>
<tr>
<th>BUSY CH0</th>
<th>BUSY CH1</th>
<th>BUSY CH2</th>
<th>BUSY CH3</th>
<th>CE2</th>
<th>CE1</th>
<th>CE0</th>
<th>PC.6</th>
<th>PC.5</th>
<th>PC.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>= PC.0</td>
<td>= PC.1</td>
<td>= PC.2</td>
<td>= PC.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LD1 = PC.7 = Indifferent

10R) Setting port B control signals to perform the reading of overrange bit and of the conversion most significant byte:

<table>
<thead>
<tr>
<th>CONT /DEM CH0</th>
<th>CONT /DEM CH1</th>
<th>CONT /DEM CH2</th>
<th>CONT /DEM CH3</th>
<th>L/H</th>
<th>OVR /POL</th>
<th>/RD</th>
<th>/WR</th>
</tr>
</thead>
<tbody>
<tr>
<td>= PB.0</td>
<td>= PB.1</td>
<td>= PB.2</td>
<td>= PB.3</td>
<td>= PB.4</td>
<td>= PB.5</td>
<td>= PB.6</td>
<td>= PB.7</td>
</tr>
<tr>
<td>= logic 0 if channel 0 in “on request” mode and vice versa</td>
<td>= logic 0 if channel 1 in “on request” mode and vice versa</td>
<td>= logic 0 if channel 2 in “on request” mode and vice versa</td>
<td>= logic 0 if channel 3 in “on request” mode and vice versa</td>
<td>= logic 0</td>
<td>= logic 1</td>
<td>= logic 0</td>
<td>= logic 1</td>
</tr>
</tbody>
</table>

11R) Overrange bit reading and high byte (MSB) reading:

<table>
<thead>
<tr>
<th>DB0</th>
<th>DB1</th>
<th>DB2</th>
<th>DB3</th>
<th>DB4</th>
<th>DB5</th>
<th>DB6</th>
<th>DB7</th>
</tr>
</thead>
<tbody>
<tr>
<td>= PA.0</td>
<td>= PA.1</td>
<td>= PA.2</td>
<td>= PA.3</td>
<td>= PA.4</td>
<td>= PA.5</td>
<td>= PA.6</td>
<td>= PA.7</td>
</tr>
<tr>
<td>= Bit D8 of conversion value</td>
<td>= Bit D9 of conversion value</td>
<td>= Bit D10 of conversion value</td>
<td>= Bit D11 of conversion value</td>
<td>= Bit D12 of conversion value</td>
<td>= Bit D13 of conversion value</td>
<td>= Bit D14 of conversion value</td>
<td>= Overrange bit (1 = overrange and vice versa)</td>
</tr>
</tbody>
</table>
12R) Setting the control signals of port B to read polarity bit and conversion most significant byte (MSB):

CONT /DEM CH0 = PB.0 = logic 0 if channel 0 in “on request” mode and viceversa
CONT /DEM CH1 = PB.1 = logic 0 if channel 1 in “on request” mode and viceversa
CONT /DEM CH2 = PB.2 = logic 0 if channel 2 in “on request” mode and viceversa
CONT /DEM CH3 = PB.3 = logic 0 if channel 3 in “on request” mode and viceversa
L /H = PB.4 = logic 0
OVR /POL = PB.5 = logic 0
/RD = PB.6 = logic 0
/WR = PB.7 = logic 1

13R) Reading polarity bit and high byte (MSB) of conversion value:

DB0 = PA.0 = Bit D8 of conversion value
DB1 = PA.1 = Bit D9 of conversion value
DB2 = PA.2 = Bit D10 of conversion value
DB3 = PA.3 = Bit D11 of conversion value
DB4 = PA.4 = Bit D12 of conversion value
DB5 = PA.5 = Bit D13 of conversion value
DB6 = PA.6 = Bit D14 of conversion value
DB7 = PA.7 = Polarity bit (1 = positive and viceversa)

14R) Setting the control signals of port B to read the conversion least significant byte (LSB):

CONT /DEM CH0 = PB.0 = logic 0 if channel 0 in “on request” mode and viceversa
CONT /DEM CH1 = PB.1 = logic 0 if channel 1 in “on request” mode and viceversa
CONT /DEM CH2 = PB.2 = logic 0 if channel 2 in “on request” mode and viceversa
CONT /DEM CH3 = PB.3 = logic 0 if channel 3 in “on request” mode and viceversa
L /H = PB.4 = 1 logico
OVR /POL = PB.5 = 0 logico
/RD = PB.6 = 0 logico
/WR = PB.7 = 1 logico

15R) Reading the low byte (LSB):

DB0 = PA.0 = Bit D0 of conversion value
DB1 = PA.1 = Bit D1 of conversion value
DB2 = PA.2 = Bit D2 of conversion value
DB3 = PA.3 = Bit D3 of conversion value
DB4 = PA.4 = Bit D4 of conversion value
DB5 = PA.5 = Bit D5 of conversion value
DB6 = PA.6 = Bit D6 of conversion value
DB7 = PA.7 = Bit D7 of conversion value
16R) Setting the control signals of port B to wait for the conversion start:

CONT /DEM CH0 = PB.0 = logic 0 if channel 0 in “on request” mode and viceversa
CONT /DEM CH1 = PB.1 = logic 0 if channel 1 in “on request” mode and viceversa
CONT /DEM CH2 = PB.2 = logic 0 if channel 2 in “on request” mode and viceversa
CONT /DEM CH3 = PB.3 = logic 0 if channel 3 in “on request” mode and viceversa
L /H = PB.4 = Indifferent
OVR /POL = PB.5 = Indifferent
/RD = PB.6 = logic 1
/WR = PB.7 = logic 1

17R) Disabilitation of A/D section used:

BUSY CH0 = PC.0 = Indifferent
BUSY CH1 = PC.1 = Indifferent
BUSY CH2 = PC.2 = Indifferent
BUSY CH3 = PC.3 = Indifferent
CE2 CE1 CE0
PC.6 PC.5 PC.4
0 0 0 = No section enabled
LD1 = PC.7 = Indifferent

18R) To repeat the conversion from the same channel, jump back to phase 4R. To perform another conversion from a different channel, jump back to phase 2R.

The description reported in the previous 18 phases is referred to one only A/D converter section. To manage more than one A/D converter the phases to perform are the same but must be executed sequentially on all the channels.
In the following pages there is a flow chart that shows in a simple and straight way the **LAD 415** utilization in modality “Conversion on request”.
The operation is referred to channel 0.
FIGURE 22: CONVERSION ON REQUEST FLOW CHART (PART 1)

1R

Inizialize: ST = 91H

2R

Set: PB = F0H

3R

If:
PC AND 01H
= 00H

4R

Set: PC = 90H

5R

Set: PB = 70H
Delay 2μs
Set: PB = F0H

6R

If:
PC AND 01H
≠ 00H

7R

If:
PC AND 01H
= 00H

8R

Set: PC = 80H
FIGURE 23: CONVERSION ON REQUEST FLOW CHART (PART 2)

A

9R
Set: PC = 90H

10R
Set: PB = A0H

11R
Get: OVR = PA.7 and MSB = PA0-6

12R
Set: PB = 80H

13R
Get: POL = PA.7 and MSB = PA0-6

14R
Set: PB = 90H

15R
Get: LSB = PA

16R
Set: PB = F0H

17R
Set: PC = 80H

OTHER CONV.? YES

18R
NO

END

B

PHASE

10
11
12
13
14
15
16
17
18

YES

NO
CONVERSION CONTINUOUSLY

In this modality the board works continuously and in autonomy: the conversion starts when the control software gives a start command, when the conversion ends the board performs a temporized phase to let the control board read the conversion value and restarts for a new conversion without any command to be given by the control card. The phases of this conversion are:

1C) Initialization of control logic PPI 82C55/71055 in mode 0 with port A as input, port B as output, port C LOW as input and port C HIGH as output;

2C) Setting port B to select as conversion mode the “Conversion continuously”:

CONT /DEM CH0 = PB.0 = logic 1 if channel 0 in “continuously” mode and viceversa
CONT /DEM CH1 = PB.1 = logic 1 if channel 1 in “continuously” mode and viceversa
CONT /DEM CH2 = PB.2 = logic 1 if channel 2 in “continuously” mode and viceversa
CONT /DEM CH3 = PB.3 = logic 1 if channel 3 in “continuously” mode and viceversa
L /H = PB.4 = Indifferent
OVR /POL = PB.5 = Indifferent
/RD = PB.6 = logic 1
/WR = PB.7 = logic 1

3C) Abilitation of A/D converter section where to perform the conversion:

BUSY CH0 = PC.0 = Indifferent
BUSY CH1 = PC.1 = Indifferent
BUSY CH2 = PC.2 = Indifferent
BUSY CH3 = PC.3 = Indifferent
CE2 CE1 CE0
PC.6 PC.5 PC.4
0 0 1 = Abilitation and conversion for channel 0
0 1 0 = Abilitation and conversion for channel 1
0 1 1 = Abilitation and conversion for channel 2
1 0 0 = Abilitation and conversion for channel 3
LD1 = PC.7 = Indifferent

4C) Wait for conversion end for selected channel through polling on signal BUSY or interrupt. In any case it is essential to exit from this phase, and continue with other phases, only when signal BUSY is disengaged.

Wait for:
BUSY CH0 = PC.0 = logic 0 if channel 0 selected, viceversa indifferent
BUSY CH1 = PC.1 = logic 0 if channel 1 selected, viceversa indifferent
BUSY CH2 = PC.2 = logic 0 if channel 2 selected, viceversa indifferent
BUSY CH3 = PC.3 = logic 0 if channel 3 selected, viceversa indifferent
5C) Setting port B to read the polarity bit and conversion most significant byte (MSB):

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE2</td>
<td>= PC.4</td>
<td>Indifferent</td>
</tr>
<tr>
<td>CE1</td>
<td>= PC.5</td>
<td>Indifferent</td>
</tr>
<tr>
<td>CE0</td>
<td>= PC.6</td>
<td>Indifferent</td>
</tr>
<tr>
<td>LD1</td>
<td>= PC.7</td>
<td>Indifferent</td>
</tr>
</tbody>
</table>

- **5C(1)** Setting port B to read the polarity bit and conversion most significant byte (MSB):
 - CONT /DEM CH0 = PB.0 = logic 1 if channel 0 in “continuously” mode and vice versa
 - CONT /DEM CH1 = PB.1 = logic 1 if channel 1 in “continuously” mode and vice versa
 - CONT /DEM CH2 = PB.2 = logic 1 if channel 2 in “continuously” mode and vice versa
 - CONT /DEM CH3 = PB.3 = logic 1 if channel 3 in “continuously” mode and vice versa
 - L /H = PB.4 = Indifferent
 - OVR /POL = PB.5 = Indifferent
 - /RD = PB.6 = logic 0
 - /WR = PB.7 = logic 1

- **6C** Reading polarity bit and conversion high byte (MSB):
 - DB0 = PA.0 = Bit D8 of conversion value
 - DB1 = PA.1 = Bit D9 of conversion value
 - DB2 = PA.2 = Bit D10 of conversion value
 - DB3 = PA.3 = Bit D11 of conversion value
 - DB4 = PA.4 = Bit D12 of conversion value
 - DB5 = PA.5 = Bit D13 of conversion value
 - DB6 = PA.6 = Bit D14 of conversion value
 - DB7 = PA.7 = Polarity bit (1 = positive and vice versa)

- **7C** Disabling /RD signal:
 - CONT /DEM CH0 = PB.0 = logic 1 if channel 0 in “continuously” mode and vice versa
 - CONT /DEM CH1 = PB.1 = logic 1 if channel 1 in “continuously” mode and vice versa
 - CONT /DEM CH2 = PB.2 = logic 1 if channel 2 in “continuously” mode and vice versa
 - CONT /DEM CH3 = PB.3 = logic 1 if channel 3 in “continuously” mode and vice versa
 - L /H = PB.4 = Indifferent
 - OVR /POL = PB.5 = Indifferent
 - /RD = PB.6 = logic 1
 - /WR = PB.7 = logic 1
8C) Setting port B to read the conversion least significant byte (LSB):

CONT /DEM CH0 = PB.0 = logic 1 if channel 0 in “continuously” mode and viceversa
CONT /DEM CH1 = PB.1 = logic 1 if channel 1 in “continuously” mode and viceversa
CONT /DEM CH2 = PB.2 = logic 1 if channel 2 in “continuously” mode and viceversa
CONT /DEM CH3 = PB.3 = logic 1 if channel 3 in “continuously” mode and viceversa
L /H = PB.4 = Indifferent
OVR /POL = PB.5 = Indifferent
/RD = PB.6 = logic 0
/WR = PB.7 = logic 1

9C) Reading conversion low byte (LSB):

DB0 = PA.0 = Bit D0 of conversion value
DB1 = PA.1 = Bit D1 of conversion value
DB2 = PA.2 = Bit D2 of conversion value
DB3 = PA.3 = Bit D3 of conversion value
DB4 = PA.4 = Bit D4 of conversion value
DB5 = PA.5 = Bit D5 of conversion value
DB6 = PA.6 = Bit D6 of conversion value
DB7 = PA.7 = Bit D7 of conversion value

10C) Disabling /RD signal:

CONT /DEM CH0 = PB.0 = logic 1 if channel 0 in “continuously” mode and viceversa
CONT /DEM CH1 = PB.1 = logic 1 if channel 1 in “continuously” mode and viceversa
CONT /DEM CH2 = PB.2 = logic 1 if channel 2 in “continuously” mode and viceversa
CONT /DEM CH3 = PB.3 = logic 1 if channel 3 in “continuously” mode and viceversa
L /H = PB.4 = Indifferent
OVR /POL = PB.5 = Indifferent
/RD = PB.6 = logic 1
/WR = PB.7 = logic 1

11C) Setting port B to read the overrange bit and conversion most significant byte (MSB):

CONT /DEM CH0 = PB.0 = logic 1 if channel 0 in “continuously” mode and viceversa
CONT /DEM CH1 = PB.1 = logic 1 if channel 1 in “continuously” mode and viceversa
CONT /DEM CH2 = PB.2 = logic 1 if channel 2 in “continuously” mode and viceversa
CONT /DEM CH3 = PB.3 = logic 1 if channel 3 in “continuously” mode and viceversa
L /H = PB.4 = Indifferent
OVR /POL = PB.5 = Indifferent
/RD = PB.6 = logic 0
/WR = PB.7 = logic 1
12C) Reading overrange bit and conversion high byte (MSB):

\[
\begin{align*}
DB0 &= PA.0 = \text{Bit D8 of conversion value} \\
DB1 &= PA.1 = \text{Bit D9 of conversion value} \\
DB2 &= PA.2 = \text{Bit D10 of conversion value} \\
DB3 &= PA.3 = \text{Bit D11 of conversion value} \\
DB4 &= PA.4 = \text{Bit D12 of conversion value} \\
DB5 &= PA.5 = \text{Bit D13 of conversion value} \\
DB6 &= PA.6 = \text{Bit D14 of conversion value} \\
DB7 &= PA.7 = \text{Overrange bit (1 = overrange and viceversa)}
\end{align*}
\]

13C) Disabling /RD signal:

\[
\begin{align*}
\text{CONT /DEM CH0} &= PB.0 = \text{logic 1 if channel 0 in “continuously” mode and viceversa} \\
\text{CONT /DEM CH1} &= PB.1 = \text{logic 1 if channel 1 in “continuously” mode and viceversa} \\
\text{CONT /DEM CH2} &= PB.2 = \text{logic 1 if channel 2 in “continuously” mode and viceversa} \\
\text{CONT /DEM CH3} &= PB.3 = \text{logic 1 if channel 3 in “continuously” mode and viceversa} \\
L /H &= PB.4 = \text{Indifferent} \\
OVR /POL &= PB.5 = \text{Indifferent} \\
/RD &= PB.6 = \text{logic 1} \\
/WR &= PB.7 = \text{logic 1}
\end{align*}
\]

14C) To manage another conversion jump to next phase, while to quit the “conversion continuously” mode jump to phase 16C.

15C) Wait for next conversion to start for selected channel through polling on signal BUSY. Once exited from this phase, jump back to phase 4C.

Wait for:

\[
\begin{align*}
\text{BUSY CH0} &= PC.0 = \text{logic 1 if channel 0 selected, viceversa indifferent} \\
\text{BUSY CH1} &= PC.1 = \text{logic 1 if channel 1 selected, viceversa indifferent} \\
\text{BUSY CH2} &= PC.2 = \text{logic 1 if channel 2 selected, viceversa indifferent} \\
\text{BUSY CH3} &= PC.3 = \text{logic 1 if channel 3 selected, viceversa indifferent} \\
\text{CE2} &= PC.4 = \text{Indifferent} \\
\text{CE1} &= PC.5 = \text{Indifferent} \\
\text{CE0} &= PC.6 = \text{Indifferent} \\
\text{LD1} &= PC.7 = \text{Indifferent}
\end{align*}
\]
16C) Setting the control signals of port B to disable “Conversion continuously mode”:

- **CONT /DEM CH0** = PB.0 = logic 0 if channel 0 in “on request” mode and viceversa
- **CONT /DEM CH1** = PB.1 = logic 0 if channel 1 in “on request” mode and viceversa
- **CONT /DEM CH2** = PB.2 = logic 0 if channel 2 in “on request” mode and viceversa
- **CONT /DEM CH3** = PB.3 = logic 0 if channel 3 in “on request” mode and viceversa
- **L /H** = PB.4 = Indifferent
- **OVR /POL** = PB.5 = Indifferent
- **/RD** = PB.6 = logic 1
- **/WR** = PB.7 = logic 1

17C) Disabilitation of A/D section used:

- **BUSY CH0** = PC.0 = Indifferent
- **BUSY CH1** = PC.1 = Indifferent
- **BUSY CH2** = PC.2 = Indifferent
- **BUSY CH3** = PC.3 = Indifferent
- **CE2 CE1 CE0**
- **PC.6 PC.5 PC.4**
 - 0 0 0 = No section enabled
- **LD1** = PC.7 = Indifferent

The description reported in the previous 17 phases is referred to one only A/D converter section. To manage more than one A/D converter the phases to perform are the same but must be executed sequentially on all the channels.

In the following pages there is a flow chart that shows in a simple and straight way the **LAD 415** utilization in modality “Conversion continuously”.

The operation is referred to channel 2.
Figure 24: Conversion continuously flow chart (part 1)

PHASE

1C
Inizialize: ST = 91H

2C
Set: PB = F4H

3C
Set: PC = B0H

4C
If: PC AND 04H = 00H

5C
Set: PB = B4H

6C
Get: POL = PA.7 and MSB = PA.0-6

7C
Set: PB = F4H

8C
Set: PB = B4H

9C
Get: LSB = PA
PHASE

10C
Set: PB = F4H

11C
Set: PB = B4H

12C
Get: OVR = PA.7 and MSB = PA0-6

13C
Set: PB = F4H

14C
OTHER CONV.? NO

15C
If: PC AND 04H ≠ 00H
YES

16C
Set: PB = F0H

17C
Set: PC = 80H

END

FIGURE 25: CONVERSION CONTINUOUSLY FLOW CHART (PART 2)
ACTIVITY LED

Management of the activity LED installed on **LAD 415** is performed through a write to register PC:

```
PC.7  ->  set LD1 status
```

Performing a write operation the status is set as specified in the following correspondance:

<table>
<thead>
<tr>
<th>Bit at logic 0</th>
<th>Activity LED ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit at logic 1</td>
<td>Activity LED OFF</td>
</tr>
</tbody>
</table>

Register PC also sets the chip select signals for A/D converter sections 0, 1 and 2, so writing to it affects also their status. Please refer to previous paragraph for more information.

CONFIGURATION INPUTS

LAD 415 is provided with five jumpers with the specific purpose to set the connection modalities for /M1 and /INT signals as in the following correspondance:

<table>
<thead>
<tr>
<th>J2</th>
<th>Connects or disconnects signal /M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>J23</td>
<td>Connects or disconnects section 0 interrupt signal</td>
</tr>
<tr>
<td>J24</td>
<td>Connects or disconnects section 1 interrupt signal</td>
</tr>
<tr>
<td>J25</td>
<td>Connects or disconnects section 2 interrupt signal</td>
</tr>
<tr>
<td>J26</td>
<td>Connects or disconnects section 3 interrupt signal</td>
</tr>
</tbody>
</table>

For further informations please refer to chapter “JUMPERS” and to figures 15 and 20.
EXTERNAL CARDS

LAD 415 can be connected to a wide range of block modules and operator interface system produced by **grifo®**, or to many system of other companies. The on board resources can be expanded with a simple connection to the numerous peripheral **grifo®** boards, both intelligent and not, thanks to its standard **ABACO®** BUS connector. Even cards with **ABACO®** I/O BUS can be connected, by using the proper mother boards. Hereunder some of these cards are briefly described; ask the detailed information directly to **grifo®**, if required.

MB3 01-MB4 01-MB8 01
Mother Board 3, 4, 8 slots
Motherboard featuring 3, 4 or 8 slots of **ABACO®** industrial BUS; pitch 4 TE; standard power supply connectors; LEDs for visual feed-back of power supply; holes for rack docking.

SPB 04-SPB 08
Switch Power BUS 4-8 slots
Motherboard featuring 4-8 slots of **ABACO®** industrial BUS; pitch 4 TE; standard power supply connectors; termination resistances; connector type F for **SPC xxx** supply; holes for rack docking.

ABB 03
ABACO® Block BUS 3 slots
3 slots **ABACO®** mother board; 4 TE pitch connectors; **ABACO®** I/O BUS connector; screw terminal for power supply; connection for DIN C type and Ω rails.

ABB 05
ABACO® Block BUS 5 slots
5 slots **ABACO®** mother board with power supply. Double power supply built in; 5Vdc 2.5A section for powering the on board logic; second section at 24Vdc 400mA galvanically coupled, for the optocoupled input lines. Auxiliary connector for **ABACO®** I/O BUS. Connection for DIN Ω rails.

SPC 03.5S
Switch Power Card +5 Vdc
Europe format switching power supply capable to provide +5 Vdc to a load of 4 A; input voltage 12÷24 Vac; power-failure; connector for back-up battery; standard connector for mother board **SPB 0x**.

SPC 512
Switch Power Card +5 Vdc +12 Vdc
Europe format switching power supply capable to provide +5 Vdc 5A and +12 Vdc 2.5 A; input voltage 12÷24 Vac; power-failure; connector for back-up battery; standard connector for mother board **SPB 0x**.

FBC 20-120
Flat Block Contact 20 vie
Interface for 2 or 1 mounting cable connectors (low profile 20 pins male) and quick release screw terminal connectors; Plastic mount for rails DIN 46277-1 and 3.
GPC® 51
General Purpose Controller fam. 51
Microprocessor family 51 INTEL including the masked BASIC chip; the board features: 16 I/O TTL lines; dip switch; 3 timer/counter; RS 232; 4 A/D converter signals resolution 11 bit; buzzer; on board EPROM programmer; RTC and 32K SRAM with Lithium battery back up; controller for display and keyboard.

GPC® 188F
General Purpose Controller 80C188
80C188 µP 20MHz; 1 RS 232 line; 1 RS 232, RS 422-485 or Current Loop line; 24 TTL I/O lines; 1M EPROM or 512K FLASH; 1M RAM Lithium battery backed; 8K serial EEPROM; RTC; Watch Dog; 8 Dip switch; 3 Timer Counter; 8 13 bit A/D lines; Power failure; activity LEDs; single power supply +5Vdc.

GPC® 15A
General Purpose Controller 84C15
Full CMOS card, 10÷20 MHz 84C15 CPU; 512K EPROM or FLASH; 128K RAM; 8K RAM and RTC backed; 8K serial EEPROM; 1 RS 232 line; 1 RS 232 line or RS 422-485 or Current Loop line; 32 or 40 TTL I/O lines; CTC; Watch dog; 2 Dip switches; Buzzer.

GPC® 150
General Purpose Controller 84C15
Microprocessor Z80 at 16 MHz; implementation completely CMOS; 512K EPROM or FLASH; 512K SRAM; RTC; Back-Up through external Lithium battery; 4M serial FLASH; 1 serial line RS 232 plus 1 RS 232 or RS 422-485 or current loop; 40 I/O TTL; 2 timer/counter; 2 watch dog; dip switch; EEPROM; A/D converter with resolution 12 bit; activity LED.

GPC® 15R
General Purpose Controller 84C15
84C15 µP, 10÷16 MHz; 1 RS 232 line; 1 RS 232 or RS 422-485 or C. L. line; 16÷24 TTL I/O lines; 16 Opto-in; 8 Relays; 4 Opto Coupled Timers Counters; 512K EPROM or FLASH; 512K RAM and RTC backed; 8K serial EEPROM; 8K Backed RAM modul; Buzzer; 1 Activity LED; Watch dog; 4÷12 readable DIPs; LCD Interface.

GPC® 323
General Purpose Controller 51 family
80C32 µP, 14 MHz; Full CMOS; 1 RS 232 line (software); 1 RS 232 or RS 422-485 or Current Loop line; 24 TTL I/O lines; 11 A/D 12 bits lines; 3 Timers Counters; 64K EPROM; 64K RAM; 32K RAM and RTC backed; 32K DIL EEPROM; 8K serial EEPROM; Buzzer; 2 Activity LED; Watch dog; 5 readable DIPs; LCD Interface.

GPC® 553
General Purpose Controller 80C552
80C552 µP, 22÷33 MHz; 1 RS 232 line (software); 1 RS 232 or RS 422-485 or Current Loop line; 16 TTL I/O lines; 8 A/D 10 bits lines; 3 Timers Counters; 64K EPROM; 64K RAM; 32K RAM and RTC backed; 32K DIL EEPROM; 8K serial EEPROM; 2 PWM lines; 1 Activity LED; Watch dog; 5 readable DIPs; LCD Interface.
FIGURE 26: POSSIBLE CONNECTIONS DIAGRAM

ANY MOTHERBOARD TYPE WITH ABACO® BUS

POWER SUPPLY
+5Vdc
ONLY

15 Bit + Sign ANALOG INPUT
VOLTAGE
±3.2768 Vdc
in ADDITION
±10 Vdc, ±5 Vdc
or
CURRENT
0÷20 mA, 4÷20 mA
with SIGNAL FITTING

CURRENT to VOLTAGE CONVERSION
with HIGH PRECISION
RESISTORS SERIE
139.00Ω

15 Bit + Sign ANALOG INPUT
VOLTAGE
±3.2768 Vdc, ±10 Vdc, ±5 Vdc
or
CURRENT
0÷20 mA, 4÷20 mA
GPC® 153
General Purpose Controller Z80
84C15 µP, 10÷16 MHz; Full CMOS; 1 RS 232 line; 1 RS 232 or RS 422-485 or Current Loop line; 16 TTL I/O lines; 8 A/D 12 bits lines; 2÷4 Timers Counters; 512K EPROM or FLASH; 512K RAM and RTC backed; 8K serial EEPROM; Buzzer; 1 Activity LED; Watch dog; 8 readable DIPs; LCD Interface.

GPC® 183
General Purpose Controller Z180
Z180 µP, 10÷16 MHz; Full CMOS; 1 RS 232 line; 1 RS 232 or RS 422-485 or Current Loop line; 24 TTL I/O lines; 11 A/D 12 bits lines; 2 Timers Counters; 512K EPROM or FLASH; 512K RAM and RTC backed; 8K serial EEPROM; Buzzer; 2 Activity LED; Watch dog; 4 readable DIPs; LCD Interface.

GPC® 324/D
“4” Type General Purpose Controller 80C32/320
80C32 or 80C320 µP, 14÷22 MHz; Full CMOS; 1 RS 232 line; 1 RS 232 or RS 422-485 or Current Loop line; 4÷16 TTL I/O lines; 3 Timers Counters; 64K EPROM; 64K RAM; 32K RAM backed; 32K DIL E2; 8K serial EEPROM; Watch dog; 1 readable DIP; LCD Interface; Abaco® I/O BUS; 5Vdc Power supply; Size: 100x50 mm.

GPC® 554
General Purpose Controller 80C552
Microprocessor 80C552 at 22 MHz; implementation completely CMOS; 32K EPROM; 32 K SRAM; 32 K EEPROM or SRAM; EEPROM; 2 RS 232 serial lines; 16 I/O TTL; 2 PWM lines; 16 bits Timer/Counter; Watch Dog; 6 signals A/D converter with resolution 10 bit; interface for ABACO® I/O BUS.

GPC® 154
“4” Type General Purpose Controller Z80
84C15 µP, 10÷16 MHz; Full CMOS; 1 RS 232 line; 1 RS 232 or RS 422-485 line; 16 TTL I/O lines; 2÷4 Timers Counters; 512K EPROM or FLASH; 512K RAM and RTC backed; 8K serial EEPROM; Watch dog; 2 readable DIPs; LCD Interface; Abaco® I/O BUS; 5Vdc Power supply; Size: 100x50 mm.

GPC® 884
General Purpose Controller Am188ES
Microprocessor AMD Am188ES up to 40 MHz16 bits; implementation completely CMOS; serie 4 format; 512K EPROM or FLASH; 512K SRAM backed with Lithium battery; RTC; 1 RS 232 serial line + 1 RS 232 or RS 422-485 or current loop; 16 I/O TTL; 3 timer/counter; watch dog; EEPROM; 11 signals A/D converter with 12 bit resolution; interface for ABACO® I/O BUS.

GPC® 114
General Purpose Controller 68HC11
Microprocessor 68HC11A1 at 8 MHz; implementation completely CMOS; serie 4 format; 32K EPROM; 32K SRAM backed with Lithium battery; 32K EPROM, SRAM, EEPROM; RTC; 1 serial line RS 232 or RS 422-485; 10 I/O TTL; 3 timer/counter; watch dog; 8 signals A/D converter with resolution 8 bit; 1 asunchronous serial line; extremly low power consumption; interface for ABACO® I/O BUS.
BIBLIOGRAPHY

Here follows a list of manuals that can be a source of further information about the devices installed on **LAD 415**.

- **Manual TEXAS INSTRUMENTS:** *The TTL Data Book - SN54/74 Families*
- **Manual TEXAS INSTRUMENTS:** *Linear Circuits - Volume 3*
- **Manual NEC:** *Microprocessors and Peripherals - Volume 3*
- **Data book TELCOM:** *Mixed Signal - Power Management - Smart Sensors*
- **Manual NATIONAL SEMICONDUCTOR:** *DataBook - Linear 2*

Please connect to the manufacturer's websites to get the latest version of all manuals and data sheets.
APPENDIX A: ALPHABETICAL INDEX

SYMBOLS
/INT 52
/M1 52

A
A/D CONVERSION SPEED 6
A/D CONVERTER 5
A/D CONVERTER REGISTERS 36
A/D DIFFERENTIAL INPUT ERROR 6
A/D EXTERNAL CLOCK FREQUENCY 6
A/D INPUT IMPEDANCE 8
A/D MAX LINEARITY AND OFFSET ERROR 6
A/D MAX OFFSET ERROR 6
A/D REFERENCE VOLTAGES 8
A/D RESOLUTION 6
ABACO® BUS 4, 6, 12, 14, 17, 32, 53
ABACO® I/O BUS 53
ACTIVITY LED 52
ADDRESSING 4
ADDRESSING SPACE 6, 32
ANALOG INPUT VOLTAGE DIVIDER 18
ANALOG INPUTS 6, 8, 10, 16
ANALOG INPUTS FITTING 18
ANALOG SIGNAL FITTING 8

B
BIBLIOGRAPHY 57
BOARD CONNECTIONS 16
BOARD MAPPING 32
BYTES TAKEN 6

C
CALIBRATION 17
CARD VERSION 1
CLOCK 4
CONFIGURATION INPUTS 52
CONNECTIONS 10
CN1 10
K1 12
CONNECTORS 6
CONTROL LOGIC 4
CONVERSION CONTINUOUSLY 45
CONVERSION END 17
CONVERSION MANAGEMENT 36
CONVERSION ON REQUEST 38
CONVERSION SPEED SELECTION 19
CONVERSION SPEEDS 20
CURRENT CONSUMPTION 8
CURRENT-TO-VOLTAGE DROP RESISTORS 19

D
DIP SWITCH 6, 16, 32
DIP1 4, 32
DIRECTIONALITY 36
DROP RESISTORS 19

E
ELECTRIC FEATURES 8
EUROCARD 6
EXTERNAL CARDS 53

G
GENERAL FEATURES 6
GENERAL INFORMATION 2

H
HARDWARE DESCRIPTION 32

I
I/O ADDRESSING 32
INPUT CONFIGURATION AS CURRENT 19
INPUT CONFIGURATION AS VOLTAGE 19
INPUT INTERFACES 4
INSTALLATION 10
INTERFACE ON ANALOG INPUTS 8
INTERFACING 4
INTERNAL REGISTERS ADDRESSING 34
INTERRUPT 17, 52
INTRODUCTION 1

J
JUMPERS 21
 2 PINS JUMPERS 26
 3 PINS JUMPERS 30
 8 PINS JUMPERS 31

L
LEDS 14, 52
PERIPHERAL DEVICES SOFTWARE DESCRIPTION 35
PERIPHERALS 6
PHYSICAL FEATURES 6
POWER SUPPLY 8, 14
PPI 71055 6, 35
PPI 82C55 6

REFERENCE VOLTAGES 5
RELATIVE HUMIDITY 6
RESET 18
RESOURCES 6

SIZE 6

TECHNICAL FEATURES 6
TEMPERATURE RANGE 6
TEST POINT 16
TR1÷11 17
TRIMMERS 17
TSC 850 5, 6, 16, 18
TTL 16
TYPE OF ANALOG INPUT SELECTION 19

VISUAL SIGNALATIONS 14
VREF 5
VREF1 16, 18
VREF2 16, 18

WEIGHT 6