GPC® 323

General Purpose Controller 80c32, 80c320, 89c51Rx2

TECHNICAL MANUAL

Intelligent module of the ABACO® BLOCK series, 100x149 mm size; optional plastic mount for connection to DIN 46277-1 and DIN 46277-3 Ω rails; CPU 80c32, or 80c320 or 89c51Rx2 at 22 MHz capable to address a maximum of 96K Bytes with CPU 80c32 or 80c320 and up to 128K Bytes with P89c52RD2; sockets for 32K SRAM, 32K EPROM, 32K EPROM, SRAM, EEPROM or FLASH EPROM; Back Up circuitry through on board and optionally also external LITHIUM battery; optional serial EEPROM from 256 to 2048 Bytes; optional Real Time Clock with 256 Bytes of RAM and capable to generate INTerrupt provided with Back Up; A/D Converter featuring 11 lines with 12 bits of resolution, full range can be +2.490 Vdc, +5.000 Vdc or 0÷20 mA, conversion time 10 µs; 24 TTL I/O signals; 1 Dip Switch with 5 switches software readable; Three 16 bits Timer Counter with Capture and compare registers; Watch dog circuitry provided with signalation LED; 2 RS232 serial lines, one configurable in RS422, RS485 or Current Loop; Standard 26 pins expansion connector for ABACO® I/O BUS interface; A/D ABACO® standard 20 pins connector; IDLE and POWER DOWN working modes; optional on board 8÷24 Vac (12÷34 Vdc) switching power supply or +5 Vdc external supply; on board logic protected against transients by TransZorb™; 2 user LEDs; 1 Buzzer; wide range of development software such as: HI TECH C, DDS C, BASIC 323, BASCOM 8051, etc.
IMPORTANT

Although all the information contained herein have been carefully verified, grifo® assumes no responsibility for errors that might appear in this document, or for damage to things or persons resulting from technical errors, omission and improper use of this manual and of the related software and hardware. grifo® reserves the right to change the contents and form of this document, as well as the features and specification of its products at any time, without prior notice, to obtain always the best product.

For specific informations on the components mounted on the card, please refer to the Data Book of the builder or second sources.

SYMBOLS DESCRIPTION

In the manual could appear the following symbols:

⚠️ Attention: Generic danger

⚠️nicos Attention: High voltage

Trade Marks

GPC®, grifo®: are trade marks of grifo®. Other Product and Company names listed, are trade marks of their respective companies.
GENERAL INDEX

INTRODUCTION ... 1

CARD VERSION ... 1

GENERAL FEATURES .. 2
 - **RESET KEY** .. 3
 - **SERIAL COMMUNICATION** .. 3
 - **POWER SUPPLY** ... 4
 - **CLOCK** ... 4
 - **ABACO® I/O BUS** ... 4
 - **CONTROL LOGIC** .. 6
 - **CPU** .. 6
 - **ON BOARD PERIPHERAL DEVICES** ... 8

TECHNICAL FEATURES .. 10
 - **GENERAL FEATURES** ... 10
 - **PHYSICAL FEATURES** ... 10
 - **ELECTRIC FEATURES** ... 11

INSTALLATION ... 12
 - **CONNECTIONS** .. 12
 - **CN 4 - POWER SUPPLY CONNECTOR** .. 12
 - **CN1 - ABACO® I/O BUS CONNECTOR** .. 13
 - **CN7 - PPI 82C55 PORT A AND C I/O CONNECTOR** .. 14
 - **CN8 - PPI 82C55 PORT B I/O CONNECTOR AND RTC INTERRUPT SIGNAL** 16
 - **CN3A - SERIAL LINE A CONNECTOR** .. 18
 - **CN3B - SERIAL LINE B CONNECTOR** .. 24
 - **CN2 - EXTERNAL BACK UP BATTERY CONNECTOR** .. 25
 - **CN6 - A/D CONVERTER INPUT CONNECTOR** .. 26
 - **DIGITAL I/O INTERFACES** ... 28
 - **I/O CONNECTION** ... 28
 - **RESET KEY** .. 29
 - **TYPE OF ANALOG INPUT SELECTION** ... 29
 - **TEST POINT** .. 29
 - **TRIMMERS AND CALIBRATION** .. 30
 - **RESET AND WATCH DOG** .. 30
 - **JUMPERS** .. 31
 - **5 PINS JUMPERS** ... 32
 - **2 PINS JUMPERS** ... 32
 - **3 PINS JUMPERS** ... 34
 - **VISUAL FEEDBACK** .. 36
 - **CONFIGURATION INPUT** ... 36
 - **BACK UP** .. 36
 - **INTERRUPTS MANAGEMENT** ... 37
 - **POWER FAILURE** .. 37
 - **MEMORY SELECTION** ... 38
FIGURE INDEX

FIGURE 1: BLOCK DIAGRAM ... 5
FIGURE 2: COMPONENTS MAP .. 7
FIGURE 3: CARD PHOTO .. 9
FIGURE 4: CN4 - POWER SUPPLY CONNECTOR FOR ON BOARD SUPPLY SECTION 12
FIGURE 5: CN1 - ABACO® I/O BUS CONNECTOR 13
FIGURE 6: CN7 - PPI 82C55 PORT A AND C I/O CONNECTOR 14
FIGURE 7: I/O SIGNALS CONNECTION DIAGRAM 15
FIGURE 8: CN8 - PPI 82C55 PORT B I/O AND RTC INTERRUPT CONNECTOR 16
FIGURE 9: LEDS, CONNECTORS, DIP SWITCH, ETC. LOCATION 17
FIGURE 10: CN3A - SERIAL LINE A CONNECTOR 18
FIGURE 11: SERIAL COMMUNICATION DIAGRAM 19
FIGURE 12: RS 232 POINT TO POINT CONNECTION EXAMPLE 20
FIGURE 13: RS 422 POINT TO POINT CONNECTION EXAMPLE 20
FIGURE 14: RS 485 POINT TO POINT CONNECTION EXAMPLE 20
FIGURE 15: RS 485 NETWORK CONNECTION EXAMPLE 21
FIGURE 16: 4 WIRES CURRENT LOOP POINT TO POINT CONNECTION EXAMPLE 22
FIGURE 17: 2 WIRES CURRENT LOOP POINT TO POINT CONNECTION EXAMPLE 22
FIGURE 18: CURRENT LOOP NETWORK CONNECTION EXAMPLE 23
FIGURE 19: CN3B - SERIAL LINE B CONNECTOR 24
FIGURE 20: CN2 - EXTERNAL BACK UP BATTERY CONNECTOR 25
FIGURE 21: CN6 - A/D CONVERTER INPUT CONNECTOR 26
FIGURE 22: A/D CONVERTER INPUT BLOCK DIAGRAM 27
FIGURE 23: JUMPERS SUMMARIZING TABLE ... 31
FIGURE 24: 5 PINS JUMPERS TABLE .. 32
FIGURE 25: 2 PINS JUMPERS TABLE .. 32
FIGURE 26: JUMPERS, MEMORIES AND BATTERY LOCATION ON COMPONENT SIDE 33
FIGURE 27: 3 PINS JUMPERS TABLE .. 34
FIGURE 28: JUMPERS LOCATION ON SOLDER SIDE 35
FIGURE 29: VISUAL FEEDBACK TABLE ... 36
FIGURE 30: MEMORY SELECTION TABLE ... 38
FIGURE 31: SERIAL COMMUNICATION DRIVERS LOCATION 41
FIGURE 32: MODE 0 MEMORY CONFIGURATION 46
FIGURE 33: MODE 1 MEMORY CONFIGURATION 47
FIGURE 34: MODE 3 MEMORY CONFIGURATION 48
FIGURE 35: I/O ADDRESSES TABLE .. 49
FIGURE 36: GPC® 323 AVAILABLE CONNECTIONS DIAGRAM 57
FIGURE A1: PPI EXPANSION ELECTRIC DIAGRAM A-1
FIGURE A2: SPA 03 ELECTRIC DIAGRAM ... A-2
FIGURE A3: QTP 16P ELECTRIC DIAGRAM ... A-3
FIGURE A4: QTP 24P ELECTRIC DIAGRAM (1 OF 2) A-4
FIGURE A5: QTP 24P ELECTRIC DIAGRAM (2 OF 2) A-5
FIGURE A6: ABACO® I/O BUS INPUT OUTPUT ELECTRIC DIAGRAM A-6
FIGURE A7: BUS INTERFACE ELECTRIC DIAGRAM A-7
FIGURE A8: IAC 01 ELECTRIC DIAGRAM ... A-8
INTRODUCTION

The use of these devices has turned - IN EXCLUSIVE WAY - to specialized personnel.

The purpose of this handbook is to give the necessary information to the cognizant and sure use of the products. They are the result of a continual and systematic elaboration of data and technical tests saved and validated from the manufacturer, related to the inside modes of certainty and quality of the information.

The reported data are destined- IN EXCLUSIVE WAY- to specialized users, that can interact with the devices in safety conditions for the persons, for the machine and for the environment, impersonating an elementary diagnostic of breakdowns and of malfunction conditions by performing simple functional verify operations, in the height respect of the actual safety and health norms.

The informations for the installation, the assemblage, the dismantlement, the handling, the adjustment, the reparation and the contingent accessories, devices etc. installation are destined - and then executable - always and in exclusive way from specialized warned and educated personnel, or directly from the TECHNICAL AUTHORIZED ASSISTANCE, in the height respect of the manufacturer recommendations and the actual safety and health norms.

The devices can't be used outside a box. The user must always insert the cards in a container that respect the actual safety normative. The protection of this container is not threshold to the only atmospheric agents, but specially to mechanic, electric, magnetic, etc. ones.

To be on good terms with the products, is necessary guarantee legibility and conservation of the manual, also for future references. In case of deterioration or more easily for technical updates, consult the AUTHORIZED TECHNICAL ASSISTANCE directly.

To prevent problems during card utilization, it is a good practice to read carefully all the informations of this manual. After this reading, the user can use the general index and the alphabetical index, respectly at the begining and at the end of the manual, to find information in a faster and more easy way.

CARD VERSION

The present handbook is reported to the GPC® 323 card release 250601 and later. The validity of the bring informations is subordinate to the number of the card release. The user must always verify the correct correspondence among the two denotations. On the card the release number is present in more points both board printed diagram (serigraph) and printed circuit (for example in the bottom right corner above C69 on the component side or near the right side below IC8 on the solder side).
The GPC® 323 belongs to the CPUs 3 Serie 100x150 mm. size. It is a powerful control low cost module capable of operating in stand alone mode or as an intelligent peripheral, and/or remoted, in a wider telecontrol or acquisition network.

The GPC® 323 module can be secured in a plastic mount for connection to Omega rails DIN 46277-1 and DIN 46277-3, thereby dispensing with the need of a rack and allowing a less costly mounting direct to the electrical control panel.

The most interesting characteristic of GPC® 323 module is that it can be equipped with a wide range of μP. It is in fact possible to get it by the standard 80C32; by the fast DALLAS 80C320. With the new PHILIPS P89CRx2 it is possible to program the internal FLASH using ISP technique, eliminating the obligation to remove the chip from the board. Microcontrollers type P89c51Rx2 provide four different FLASH sizes, from 16K to 64K Byte. The characteristics of the GPC® 323 module remain basically the same, but its performance changes according to the built in μP.

High level languages allow an immediate use of operator interfaces: KDx x24 boards are available, or if you need a finished object, there is the operator panel QTP xxP. This operator panel, offered in the open frame version, bears the same aesthetic as QTP xx, but, as the local intelligence is not furnished, it is driven directly by GPC® 323, allowing a remarkable cost reduction.

Also, several power supply solutions are available, to allow the module to be easily installed in any control system without the need to employ specific and expansive external suppliers.

GPC® 323 is provided with a set of ABACO® standard connectors that allow an immediate use of any of the several BLOCK I/O modules or allow to connect, in a simple and not expansive way, field operator interfaces made directly by the user or thidry parts.

Finally the presence of the ABACO® I/O BUS allows the connection to cards as ZBR xxx, ZBT xxx, etc., and through ABB 03 and ABB 05 mother boards even to ABACO® BUS peripheral cards.

At present there are some software development tools which allow the card to be used as developing system of itself both in asselmber and high level languages. Noteworthy among these are the numerous C compilers, FORTH, the powerfull and handy compilers BASCOM 8051 and BASIC 323.
- IDLE and POWER DOWN working modes
- Optional on board **8÷24 Vac** (12÷34 Vdc) switching power supply or **+5 Vdc** external supply
- On board logic protected against transients by **TransZorb™**
- 2 user LEDs
- 1 Buzzer
- Wide range of development software such as: **HI TECH C, DDS C; BASIC 323, BASCOM 8051**, etc.

Here follows a description of the board's functional blocks, with an indication of the operations performed by each one. To easily locate these blocks and verify their connections please refer to figure 1.

RESET KEY

P1 reset key of the **GPC® 323** board allows the user to reset the board and restarting it in a general clearing condition.

The main purpose of this key is to come out of infinite loop conditions, useful especially during debug and develop phases, or to ensure a particular initial status. Please see figure 9 for an easy localization of this contact.

SERIAL COMMUNICATION

An hardware serial line is always available on **GPC® 323** (named serial A) and a second serial line (named serial B) is managed as below described:

- **µP 80C32:** software serial line driven through two microprocessor I/O lines;
- **µP 80C320:** hardware serial line driven by proper hardware section;

The hardware serial communication lines are completely software configurable for physical protocol and by simply programming some microprocessor registers, the user can set the baud rate, stop bits number, length of character and parity. For software serial line the physical protocol is completely defined by the software procedures. Some software tools (**BASIC 323, BASCOM 8051**, etc.) directly manages the software lines through high level instructions.

The serial line B is always RS 232 buffered, while the serial line A can be configured in RS 232, RS 422, RS 485 or passive current loop thanks to comfortable on board jumpers.

For further information about serial communication please refer to chapter "SERIAL COMMUNICATION SELECTION" and to the technical documentation of the microprocessor.
POWER SUPPLY

The unique voltage needed to supply the board (+5 Vdc) can be provided in two ways:

- directly through pin 25 (GND) and 26 (+5 Vdc) of connector CN1
- indirectly through the switching supply sections (optional, code SW)

The type of supply cannot be changed by the user so it must be specified in the order. On the card the power supply signals are available on all the connectors but when the best power layout is required we suggest to supply power through CN1 and to get it from the other connectors. This explain the direction reported for +5 Vdc signal on each connector of the card. The can be anyway supplied from a connector indicate as output for +5 Vdc but this is severely discouraged so eventual consequences are totally responsibility of the user.

Switching supply section requires an input voltage in the range 8÷24 Vac (12÷34 Vdc) which can be provided through specific standard connectors quick and easy to install, for further information please refer to the paragraph “SUPPLY VOLTAGES”.

The power supply circuit is designed for reducing the consumption (the microprocessor power down and idle modes are available) and for increasing the electrical noise immunity.

Please remind that on board there is a protection circuit against voltage peaks by TransZorb™ and that it is a good practise to maintain galvanically isolated from +5 Vdc all the others power voltages of the developed system.

CLOCK

On GPC® 323 board two different circuits provide the CPU clock frequency and the Real Time Clock frequency. This solution has been chosen because using a separate circuit to to generate the CPU clock allows to change it without having to make any other modification to the rest of the board. The Real Time Clock frequency is unique, its value is 32768 Hz, the CPU clock frequency is 22.1184 MHz; this latter is used also to obtain the frequencies needed by other on board sections (timer counter, serial lines, etc.).

Please remark that the CPU working frequency may be divided by software to reduce power consumption.

ABACO® I/O BUS

One of the most important features of GPC® 323 is its possibility to be interfaced to many others industrial cards. Thanks to its standard ABACO® I/O BUS connector, the card can be connected to some of the numerous grifo® boards, both intelligent and not; for example the user can directly use cards for analog signals acquisition (A/D), cards for analog signals generation (D/A), cards for digital I/O signals management, cards with timers and counters, cards for temperature controls and even custom boards designed to satisfy specific needs of the end user.

Using ABB 03 or ABB 05 mother boards it is possible manage all the BUS ABACO® single EURO cards. So GPC® 323 becomes the right component for each industrial automation system, in fact ABACO® I/O BUS makes the card easily expandable with the best price/performance ratio.
FIGURE 1: BLOCK DIAGRAM

- **Drivers**
 - RS 232
 - RS 422
 - RS 485
 - Current Loop

- **CPU 51 family**

- **A/D**
 - TLC 2543

- **IC 10**
 - Serial EEPROM

- **IC 12**
 - RTC + SRAM

- **IC 4**
 - SRAM

- **IC 5**
 - EPROM

- **IC 3**
 - EPROM, SRAM, Flash, EEPROM

- **Watch Dog**

- **Power Failure**

- **PPI 82c55**

- **DSW1**
 - Control Logic

- **CN1**
 - ABACO® I/O Bus

- **CN3A**
 - Serial Line A

- **CN3B**
 - Serial Line B

- **CN2**
 - Back Up

- **CN7**
 - 16 TTL I/O

- **CN8**
 - 8 TTL I/O

- **CN6**
 - 8 A/D Lines

- **3V Lithium Battery**

ITALIAN TECHNOLOGY

GPC® 323 Rel. 5.30

Page 5
CONTROL LOGIC

The addresses of all peripheral device's registers and of memory devices on GPC® 323 are assigned from a specific control logic that allocates all these devices in the microprocessor addressing space. For further information please refer to paragraph "I/O ADDRESSES" and "MEMORY ADDRESSES" of this manual.

CPU

The GPC® 323 can use many of '51 microprocessors family as 80C32, 80C52, 87C52, 89C52 (from INTEL and other second sources), 89S8252 (from ATMEL), 89CRx+/2 (from PHILIPS) 80C320, 87C320 (manufactured by DALLAS) and all the interchangeable ones. These 8 bit microprocessors are code compatible with the world wide used 8051 INTEL and they have an extended instruction set, fast execution time, easy use of all kind of memory and an efficient interrupt management. This manual reports, in any of its paragraphs, a description of common features to all the microprocessors, making distinctions only when needed.

The most important features of the described microprocessor, are:

<table>
<thead>
<tr>
<th>Microprocessor</th>
<th>80C32</th>
<th>89S8252</th>
<th>89CRx+/2</th>
<th>80C320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data BUS width</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Clock system cycle</td>
<td>12</td>
<td>12</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Internal RAM (bytes)</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>Internal ROM (kbytes)</td>
<td>8</td>
<td>8</td>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td>Internal EEPROM (kbytes)</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>External code area (kbytes)</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>External data area (kbytes)</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>I/O ports</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>16 bits Timer/Counters</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Interrupt sources</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Interrupt priority level</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>A/Syncronous serial line</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Idle mode or Power down mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Power monitor and control section</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Internal watch dog timer</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>In system programming</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>In application programming</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

For further information, please refer to specific documentation of the manufacturing company or to appendix B of this manual. Please remember that the previous table describes the general microprocessor features and some of them can be not supported by the card.

The user must specify the requested microprocessor in the order phase and in absence of any indication the card is supplied in its default condition with 80C32. The version with DALLAS 80C320 is instead denoted by the D suffix = GPC® 323D.
FIGURE 2: COMPONENTS MAP
ON BOARD PERIPHERAL DEVICES

GPC® 323 board has been designed to solve several problems of industrial automation control, so it has been provided with peripheral devices that perform an interface to the external world. In detail:

- **External watchdog**: astable section not microprocessor inside with about 1.4 s of intervent time. The retrigger is completely software performed through the access to opportune registers located in the microprocessor addressing space and gives to the board an externally high degree of safety. The intervent time can be changed on request of the User by interverting on specific RC networks (in case of need please contact grifo®). Should the board use microprocessors provided with a watchdog section inside the user could take advantage of two separated circuitry providing different characteristics, so the safety degree of the board would increase.

- **Serial EEPROM**: the serial EEPROM module to install on IC10 is essential to the user who needs to keep information in memory also when power supply fails without using the backed SRAM module, obtaining this way an extremely high degree of safety for data integrity. Size of this module can vary in the range 521÷2048 bytes, default is 512.

- **Board configuration**: to make the board and the applications program developed for it easier to configure an 8 pins dip switch has been installed, five of which are readable by the user. The possibility to read by software the status of some switches allows the user the chance to manage several working conditions through an unique program without no need to employ more input signals (characteristic applications are: language selection, program parameter determination, working modalities selection, etc.). On GPC® 323 board two activity LEDs have been installed, these LEDs are software managed and the user may employ them to provide visual feedback about the system status.

- **Real Time Clock**: the backed SRAM module to install on IC12 is provided with a complete Real Time Clock module capable to manage hour, minutes, seconds, day of month, month, year and day of week as a stand alone device.

- **I/O lines**: GPC® 323 features three 8 bits parallel ports performing 24 TTL level I/O signals whose directionality is byte-level software settable. These I/O signals provide the GPC® 323 board more employ possibilities (for example the management of non intelligent peripherals, interfaces, etc.) also in applications where the communication handshake must be completely software managed. The lines can be completely programmed by software through four registers located in the CPU addressing space.

- **A/D converter**: this peripheral can acquire 11 channels with a maximum resolution of 12 bits. By software it is possible to decide which channels to employ, to start and to stop the acquisition, etc., through a synchronous communication to the device. By means to simplify the management of this device some software packages provide utility procedures that are capable to manage all its parts. The connectable analog signals are variable voltage signals in the range 0÷2.490Vdc (default), 0÷5.000 Vdc (option .VREF-5) or current signals in the range 0÷20 mA (option .8420). This device is optional and must be explicitly requested in the order (code .AD), also the type of analog input must be explicitly specified in the order.

- **Buzzer**: GPC® 323 board features a capacitive buzzer capable to produce a constant sound, driven by a circuitry that can be software enabled and/or disabled through the control logic, that can be used to generate acoustic alerts, sound feedback, etc.
FIGURE 3: CARD PHOTO
TECHNICAL FEATURES

GENERAL FEATURES

Devices:
- 24 programmable TTL input/output lines
- 3 timer counters (16 bits)
- 1 bidirectional RS 232 serial line (software/hardware)
- 1 bidirectional RS 232, RS 422, RS 485, current loop serial line
- 1 buzzer
- 1 dip switch with 8 switches
- 2 user manageable LEDs
- 1 watch dog
- 1 reset key
- 1 software readable user inputs
- 1 **ABACO® I/O BUS** expansion interface
- 1 backed Real Time Clock
- 1 power failure circuit

Memory:
- IC 5: 32K x 8 EPROM
- IC 4: 32K x 8 SRAM
- IC 3: 32K x 8 SRAM, EPROM, EEPROM, FLASH EPROM
- IC 10: serial EEPROM from 256 bytes to 2048 bytes
- IC 12: 256 bytes SRAM+RTC

Memories access time: 70 nsec

CPU:
- INTEL 80C32 and compatible ones
- ATMEL 89S8252 and compatible ones
- PHILIPS 89CRx+/2 and compatible ones
- DALLAS 80C320 and compatible ones

Clock Frequency: 22.1184 MHz

A/D resolution: 12 bit

A/D conversion time: 10 µsec

External watch dog reset time: from 940 msec to 2060 msec (typical 1420 msec)

PHYSICAL FEATURES

Size: 100 x 149 x 25 mm

Weight: 178 g

Temperature range: 0°C to 50°C

Relative humidity: 20% to 90% (without condense)
Connectors:

- CN1: 26 pins, male, vertical, low profile connector
- CN2: 2 pins, male, vertical, low profile connector
- CN3A: 6 pins PLUG connector
- CN3B: 6 pins PLUG connector
- CN4: 2 pins quick release screw terminal connector
- CN6: 20 pins, male, vertical, low profile connector
- CN7: 20 pins, male, vertical, low profile connector
- CN8: 20 pins, male, vertical, low profile connector

ELECTRIC FEATURES

Power supply voltage:

- +5 Vdc (without supply section)
- 6÷12 Vac (9÷16 Vdc) (linear supply section)
- 8÷24 Vac (12÷34 Vdc) (switching supply section)

Consumption on +5 Vdc:

- 156 mA (default configuration)
- 199 mA (full and higher configuration)

Current available on +5 Vdc for external loads:

- Depends on external supply *
- 800 mA *

On board back up battery:

- 3.0 Vdc; 180 mAh

External back up battery:

- 3.6÷5 Vdc

Back up current:

- 4.2 μA (on board battery)
- 5.2 μA (external 3.6 V battery)

A/D converter input impedance:

- high

RS 422-485 termination net:

- line termination = 120 Ω
- Positive pull-up resistor = 3.3 KΩ
- Negative pull-down resistor = 3.3 KΩ

Power failure threshold:

- 52 mV before reset activation

* Data here reported are referred to a 20 centigrad degreeses environmental temperature (for further informations please refer to the paragraph “SUPPLY VOLTAGES”).
INSTALLATION

In this chapter there are the information for a right installation and correct use of the card. The user can find the location and functions of each connectors, jumpers, LEDs and some explanatory diagrams.

CONNECTIONS

The GPC®323 module has 7 connectors that can be linkeded to other devices or directly to the field, according to system requirements. In this paragraph there are connectors pin out, a short signals description (including the signals direction), connectors location (please refer to figure 9) and some electrical diagrams that shows the on board circuit of each connector.

CN 4 - POWER SUPPLY CONNECTOR

CN4 is a 2 pins screw terminal connector. The board supply voltage must be provided through this connector. When using the board without any power supply section, the +5 Vdc must be provided through pin 26 (+Vdc) and pin 25 (GND) of CN1.

![Figure 4: CN4 - Power Supply Connector for On Board Supply Section](image)

Signals description:

- **8÷24 Vac (12÷34 Vdc)**
 - 8÷24 Vac (12÷34 Vdc) (switching section)
 - 6÷12 Vac (9÷16 Vdc) (linear section)

- **6÷12 Vac (9÷16 Vdc)**
 - 6÷12 Vac (9÷16 Vdc) (linear section)

Figure 4: CN4 - Power Supply Connector for On Board Supply Section
CN1 - ABACO® I/O BUS CONNECTOR

CN1 is a 26 pins, male, vertical, low profile connector with 2.54 mm pitch. Through CN1 the card can be connected via ABACO® I/O BUS to some of the numerous grifo® boards, both intelligent and not. For example the user can directly use cards for analog signals acquisition (A/D), cards for analog signals generation (D/A), cards for digital I/O signals management, cards with timers and counters, etc. All this connector signals are at TTL level.

Figure 5: CN1 - ABACO® I/O BUS CONNECTOR

Signals description:

- **A0÷A7**: O - Address BUS.
- **D0÷D7**: I/O - Data BUS.
- **/INT BUS**: I - Interrupt request (open collector type).
- **/NMIBUS**: I - Non mascable interrupt.
- **/IORQ**: O - Input output request.
- **/READ**: O - Read cycle status.
- **/WRITE**: O - Write cycle status.
- **/RESET**: O - Reset.
- **+5 Vdc**: I - +5 Vdc power supply.
- **GND**: - Ground signal.
- **N.C.**: - Not connected.
CN7 - PPI 82C55 PORT A AND C I/O CONNECTOR

CN7 is a 20 pins, male, vertical, low profile connector, 2.54 mm pitch. Through CN7 two parallel 8 bits ports out of three (ports A and C) of programmable peripheral PPI 82C55 are connected to the external world. All this connector's signals are at TTL level and follow the I/O ABACO® standard.

![Figure 6: CN7 - PPI 82C55 PORT A AND C I/O CONNECTOR](image)

Signals description:

- **PA.n** = I/O - PPI 82C55 port A n-th digital signal
- **PC.n** = I/O - PPI 82C55 port C n-th digital signal
- **GND** = - Ground signal
- **+5 Vdc** = O - +5 Vdc signal
- **N.C.** = - Not connected

Remarkable is the possibility to connect directly through CN7 a set of interfaces designed to solve several typical problems of industrial automation. We especially would want to remark the simplicity of installation and software management of QTP 24P, KDL x24, KDF 224, etc., that are also supported by high level programming languages. For further information please refer to the paragraph “OPERATOR INTERFACES”.

<table>
<thead>
<tr>
<th>PA.1</th>
<th>PA.3</th>
<th>PA.5</th>
<th>PA.7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PC.6</th>
<th>PC.4</th>
<th>PC.2</th>
<th>PC.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GND</th>
<th>17</th>
<th>18</th>
<th>+5 Vdc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>N.C.</th>
<th>19</th>
<th>20</th>
<th>N.C.</th>
</tr>
</thead>
</table>
FIGURE 7: I/O SIGNALS CONNECTION DIAGRAM
CN8 - PPI 82C55 PORT B I/O CONNECTOR AND RTC INTERRUPT SIGNAL

CN8 is a 20 pins, male, vertical, low profile connector, 2.54 mm pitch. Through CN8 one of the three programmable peripheral PPI 82C55 8 bits parallel ports (port B) is connected to the external world. All this connector's signals are at TTL level and follow the I/O ABACO® standard. Periodic signal generated by RTC is also present. The signal can be disabled, while the period can be selected amongst several options.

Figure 8: CN8 - PPI 82C55 port B I/O and RTC interrupt connector

Signals description:

PB.\text{n} = I/O - PPI 82C55 port B \text{n}-th digital signal
GND = - Ground signal
/IRTC = - Periodic interrupt generated by Real Time Clock
+5 Vdc = O - +5 Vdc signal
N.C. = - Not connected
FIGURE 9: LEDs, Connectors, Dip Switch, etc. Location
CN3A - SERIAL LINE A CONNECTOR

CN3A is a 6 pins, female PLUG connector. On CN3A are available the buffered signals for RS 232, RS 422, RS 485, current loop serial line A that is physically connected to the hardware serial line 0 of the microprocessor. The electric protocol follows the CCITT normative and all the signals are placed in order to reduce interference and electrical noise and in order to simplify connection with other systems.

Figure 10: CN3A - Serial Line A Connector

Signals description:

- **RXA RS 232** = I - Serial line A RS 232 Receive Data.
- **TXA RS 232** = O - Serial line A RS 232 Transmit Data.
- **RXA- RS 422** = I - Receive Data Negative: Serial line A negative signal for RS 422 serial differential receive.
- **RXA+ RS 422** = I - Receive Data Positive: Serial line A positive signal for RS 422 serial differential receive.
- **TXA- RS 422** = O - Transmit Data Negative: Serial line A negative signal for RS 422 serial differential transmit.
- **TXA+ RS 422** = O - Transmit Data Positive: Serial line A positive signal for RS 422 serial differential transmit.
- **RXTXA- RS 485** = I/O - Receive Transmit Data Negative: Serial line A negative signal for RS 485 serial differential receive and transmit.
- **RXTXB+ RS 485** = I/O - Receive Transmit Data Positive: Serial line A positive signal for RS 485 serial differential receive and transmit.
- **RXA- C.L.** = I - Receive Data Negative: Serial line A negative signal for Current Loop serial bipolar receive.
- **RXA+ C.L.** = I - Receive Data Positive: Serial line A positive signal for Current Loop serial bipolar receive.
- **TXA- C.L.** = O - Transmit Data Negative: Serial line A negative signal for Current Loop serial bipolar transmit.
TXA+ C.L.

= O - Transmit Data Positive: Serial line A positive signal for Current Loop serial bipolar transmit.

+5 Vdc

= O - +5 Vdc or ground signal.

GND

= - Ground signal.

Figure 11: Serial communication diagram
Figure 12: RS 232 Point to Point Connection Example

Figure 13: RS 422 Point to Point Connection Example

Figure 14: RS 485 Point to Point Connection Example
Please remark that in a RS 485 network two forcing resistors must be connected across the net and two termination resistors (120 Ω) must be placed at its extremis, respectively near the Master unit and the Slave unit at the greatest distance from the Master.
Forcing and terminating circuitry is installed on GPC® 323 board. It can be enabled or disabled through specific jumpers, as explained later.
For further informations please refer to TEXAS INSTRUMENTS Data-Book, "RS 422 and RS 485 Interface Circuits", the introduction about RS 422-485.
Figure 16: 4 wires current loop point to point connection example

Figure 17: 2 wires current loop point to point connection example
Possible passive current loop connections are two: 2 wires and 4 wires. These connections are shown in figures 16–18 where it is possible to see the voltage for VCL and the resistances for current limitation (R). The supply voltage varies in compliance with the number of connected devices and voltage drop on the connection cable.

The choice of the values for these components must be done considering that:
- circulation of a 20 mA current must be guaranteed;
- potential drop on each transmitter is about 2.35 V with a 20 mA current;
- potential drop on each receiver is about 2.52 V with a 20 mA current;
- in case of shortcircuit each transmitter must dissipate at most 125 mW;
- in case of shortcircuit each receiver must dissipate at most 90 mW.

For further info please refer to HEWLETT-PACKARD Data Book, (HCPL 4100 and 4200 devices).
CN3B - SERIAL LINE B CONNECTOR

CN3B is a 6 pins, female PLUG connector. On CN3B are available the buffered signals for RS 232 serial line B that is physically connected to the hardware serial line 1 of the microprocessor or to the software serial line. The electric protocol follows the CCITT normative and all the signals are placed in order to reduce interference and electrical noise and in order to simplify connection with other systems.

Figure 19: CN3B - Serial Line B Connector

Signals description:

- **RXB RS 232** = I - Serial line B RS 232 Receive Data.
- **TXB RS 232** = O - Serial line B RS 232 Transmit Data.
- **+5 Vdc** = O - +5 Vdc or ground signal.
- **GND** = O - Ground signal.
- **N.C.** = - Not connected.
CN2 - EXTERNAL BACK UP BATTERY CONNECTOR

CN2 is a 2 pins, male, vertical, low profile connector with 2.54 mm pitch. Through CN2 the user back up the IC4 SRAM and the real time clock through an external battery when the power supply is switched off (for further information please refer to paragraphs "ELECTRIC FEATURES", "BACK UP" and "MEMORY SELECTION").

![Figure 20: CN2 - External back up battery connector](image)

Signals description:

+Vbat = I - External back up battery positive pin
GND = - External back up battery negative pin
CN6 - A/D CONVERTER INPUT CONNECTOR

CN6 is a 20 pins, male, vertical, low profile connector, 2.54 mm pitch. Through CN6 the 11 A/D converter section input signals interface to the external world.
This connector accepts voltage analog signals (0±2.490 Vdc or 0±5.000 Vdc) or current analog signals (0±20 mA) and follow the A/D ABACO® standard.
Signals are placed in order to reduce interference and electricale nois warranting a good signal transmission and in order to simplify connection with other systems.

![CN6 Connector Diagram](image)

Figure 21: CN6 - A/D CONVERTER INPUT CONNECTOR

Signals description:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCn</td>
<td>A/D converter n-th channel analog input</td>
</tr>
<tr>
<td>GND</td>
<td>Digital ground signal</td>
</tr>
<tr>
<td>AGND</td>
<td>Analog ground signal</td>
</tr>
<tr>
<td>+5 Vdc</td>
<td>+5 Vdc signal</td>
</tr>
</tbody>
</table>

Page 26
Figure 22: A/D converter input block diagram
DIGITAL I/O INTERFACES

Through CN7 (ABACO® I/O BUS standard connector) the GPC® 323 card can be connected to all the numerous grifo® boards featuring the same standard pin out. Installation of these modules is very easy; in fact only a 20 pins flat cable (code FLT20+20) that carries also power supply is required, while the software management of these interfaces is as easy and immediate; in fact most of the software packages available for GPC® 323 card are provided with the necessary procedures. These latter are software driver for almost all the languages, and allow to use operator interfaces through the whole power of high level instructions.

Remarkable interfaces are:

- **QTP 16P, QTP 24P, KDL x24, KDF 224, DEB 01**, etc. that solve all the local operator interfacing problems. These modules are provided with all the resources needed to obtain a high level human machine interface (they feature alphanumeric displays, matrix keyboard and visualization LEDs) at a short distance from GPC® 323 card. The available software drivers allow to manage the operator interface resources directly through the high level instructions for console management.

- **IAC 01, DEB 01**: it is an interface for CENTRONICS parallel printer that can be connected with a standard printer cable. About software the developed drivers provide procedures to read and write data at a specified address, for the selected programming language.

- **MCI 64**: it a large mass memory support that can directly manage the PCMCIA memory cards (RAM, FLASH, ROM, etc.) in their available sizes. About software the developed drivers provide a complete file system interfacing allowing to access the informations stored in the memory card directly through the high level file management instructions.

- **RBO xx, TBO xx, XBI xx, OBI xx**: these are buffer interfaces for I/O TTL signals. With these modules the the TTL input signals are converted in NPN or PNP optoisolated inputs and the TTL output signals are converted in relays or transistor optoisolated outputs. Some of the above mentioned interfaces can be connected directly to CN7.

For more information refer to "EXTERNAL CARDS" chapter and the software tools documentation.

I/O CONNECTION

To prevent possible connecting problems between GPC® 323 and the external systems, the user has to read carefully the information of the previous paragraphs and he must follow these instructions:

- For RS 232, RS 422, RS 485 and current loop communication signals the user must follow the standard rules of these protocols.
- For all TTL signals the user must follow the rules of this electric standard. The connected digital signal must be always referred to card digital ground (GND). For TTL signals, the 0 Vdc level corresponds to logic state "0", while 5Vdc level corresponds to logic state "1".
- The analog inputs (A/D section) must be connected to low impedance signals in the following ranges: 0÷2,490 V or 0÷5,000 V according to selected voltage reference (Vref). Remember that the eleven analog inputs available on CN6 are provided of filter capacitors that ensure an higher stability of the acquired signals, but reduce at the same time the bandwith frequency. For further information please refer to the paragraph “TYPE OF ANALOG INPUT SELECTION”.
RESET KEY

P1 reset key of the GPC® 323 board allows the user to reset the board and restarting it in a general clearing condition. After pressing and releasing P1 the board restarts its execution in EPROM or internal FLASH. The main purpose of this key is to come out of infinite loop conditions, useful especially during debug and develop phases, or to ensure a particular initial status. Please see figure 9 for an easy localization of this contact.

TYPE OF ANALOG INPUT SELECTION

GPC® 323 board can accept analog voltage and/or current inputs, as described in the previous paragraphs and chapters. The input type selection can be made only for 8 out of 11 input analog channels during the order phase and is performed mounting a specific voltage-current conversion module made by precision resistors (code .8420). In detail:

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>R37</td>
<td>channel 0</td>
</tr>
<tr>
<td>R36</td>
<td>channel 1</td>
</tr>
<tr>
<td>R35</td>
<td>channel 2</td>
</tr>
<tr>
<td>R34</td>
<td>channel 3</td>
</tr>
<tr>
<td>R33</td>
<td>channel 4</td>
</tr>
<tr>
<td>R32</td>
<td>channel 5</td>
</tr>
<tr>
<td>R31</td>
<td>channel 6</td>
</tr>
<tr>
<td>R30</td>
<td>channel 7</td>
</tr>
</tbody>
</table>

Should the voltage-current conversion module not to be mounted (default case) the corresponding channel accepts a voltage input signal in the range 0÷2.49 Vdc (default) or 0÷5.00 Vdc (optional); otherwise a current input signal is accepted. The value of the above mentioned resistors is obtained by the following spread:

\[R = 2.49 \, \text{V} / \text{Imax} \quad \text{or} \quad R = 5.00 \, \text{V} / \text{Imax} \]

Usually the voltage-current conversion modules are made using 124 Ω precision resistors, corresponding to 4÷20 mA or 0÷20 mA for 2.40 Vdc full range. To easily locate the voltage-current conversion module please refer to figures 9 and 22.

TEST POINT

The board is provided with a test point called TP1, that allows to read, through a galvanically isolated multimeter, the A/D converter reference voltage which is calibrated in laboratory. TP1 is made of two contacts:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Vref</th>
</tr>
</thead>
<tbody>
<tr>
<td>pin 1</td>
<td>Vref</td>
</tr>
<tr>
<td>pin 2</td>
<td>GND</td>
</tr>
</tbody>
</table>

To easily locate the test point contacts please refer to figure 9, while for further informations about Vref signal please refer to the paragraph “TRIMMER AND CALIBRATION”.

ITalian Technology
TRIMMERS AND CALIBRATION

On GPC® 323 is available a trimmer, named RV1, that calibrates the Vref voltage of the optional A/D converter (code AD) section. The GPC® 323 is subjected to a careful test that verifies and calibrates all the card sections. To easily locate the trimmer, please refer to figure 9. The calibration is executed in laboratory, with a controlled +20°C room temperature, following these steps:

- The A/D voltage reference (Vref) is calibrated through RV1 trimmer, by using a 5 digits precision multimeter, to a value of +2.4900 Vdc or +5.0000 Vdc, measured on test point TP1.

- The correspondence between the analog input signal and the combination read from A/D is verified. This check is performed with a reference signal connected to A/D inputs and testing that the A/D combination and the theoretical combination differ at maximum of the A/D section errors sum.

- The trimmer is blocked with paint.

The analog interfaces use high precision components that are selected during mounting phase to avoid complicate and long calibration procedures. After the calibration, the on board trimmer is blocked with paint to maintain calibration also in presence of mechanic stresses (vibrations, movements, delivery, etc.).

The user must not modify the card calibration, but if thermic drifts, time drifts and so on, make necessary a new calibration, the user must strictly follow the previous described procedure.

RESET AND WATCH DOG

The watch dog circuit of GPC® 323 is really efficient and provided of easy software management. In details the most important features of this circuit are:

- astable functionality;
- intervent time of about 1420 msec;
- hardware enable by jumper J8;
- software retrigger;

With the astable mode when the intervent time elapses, the circuit becomes active, it stay active till the end of reset time (about 200 msec) and after it is deactivated. Jumper J8 connects the watch dog circuit to reset circuit so when it is connected the watch dog is enabled and vice versa. The watch dog retrigger operation is described in chapter "WATCH DOG".

After an activation and following deactivation of /RESET signal, the card resumes execution of the program saved on IC5 (at address 0000H) starting from a global reset status of all the on board peripheral devices.

Please remember that the /RESET signal is connected to CN1 connector and that on GPC® 323 are available other reset sources like the power good circuit and the contact P1. P1 is a normally open contact and when the contact is closed (shortcut of the two pins) the reset circuit is enabled.
JUMPERS

On GPC® 323 there are 16 jumpers for card configuration. Connecting these jumpers, the user can define for example the memory type and size, the peripheral devices functionality and so on. Here below is the jumpers list, location and function:

<table>
<thead>
<tr>
<th>JUMPERS</th>
<th>N. PINS</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>2</td>
<td>Connects +5 Vdc to pin 26 of CN1.</td>
</tr>
<tr>
<td>J2</td>
<td>5</td>
<td>Selects memory device size on IC3.</td>
</tr>
<tr>
<td>J6</td>
<td>2</td>
<td>Connects external back up battery.</td>
</tr>
<tr>
<td>J7</td>
<td>3</td>
<td>Selects directionality and connection modality for RS 422 and RS 485 serial line.</td>
</tr>
<tr>
<td>J8</td>
<td>2</td>
<td>Connects Watch Dog circuitry to reset circuitry.</td>
</tr>
<tr>
<td>J18</td>
<td>3</td>
<td>Selects the signal to connect to pin 14 (/INT0) of CPU.</td>
</tr>
<tr>
<td>J19</td>
<td>3</td>
<td>Provides ISP programming voltage.</td>
</tr>
<tr>
<td>J20</td>
<td>3</td>
<td>Selects CPU starting modality.</td>
</tr>
<tr>
<td>J22</td>
<td>2</td>
<td>Connects signal TXA RS 232 to pin 2 of connector CN3A.</td>
</tr>
<tr>
<td>J23</td>
<td>2</td>
<td>Connects signal RXA RS 232 to pin 5 of connector CN3A.</td>
</tr>
<tr>
<td>J24</td>
<td>3</td>
<td>Connects CPU serial receive signal to driver RS 232 or to driver RS 422-485.</td>
</tr>
<tr>
<td>JS1, JS2</td>
<td>2</td>
<td>Connect forcing and termination circuitry to RS 422-485 serial communication line.</td>
</tr>
<tr>
<td>JS3</td>
<td>3</td>
<td>Selects the signal to connect to pin 1 of CN3A.</td>
</tr>
<tr>
<td>JS4</td>
<td>3</td>
<td>Selects the signal to connect to pin 1 of CN3B.</td>
</tr>
<tr>
<td>JS6</td>
<td>3</td>
<td>Selects which voltage source will supply the Vref generation circuitry of A/D Converter.</td>
</tr>
</tbody>
</table>

FIGURE 23: JUMPERS SUMMARIZING TABLE

The following tables describe all the right connections of GPC® 323 jumpers with their relative functions. To recognize these valid connections, please refer to the board printed diagram (serigraph) or to figure 2 of this manual, where the pins numeration is listed, while for recognizing jumpers location, please refer to figures 26 and 28.

The "*" used in the following tables, denotes the default connection, or on the other hand the connection set up at the end of testing phase, that is the configuration the user receives.
5 Pins Jumpers

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Connection</th>
<th>Purpose</th>
<th>Def.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2</td>
<td>position 1-2 and 3-4</td>
<td>Selects 32Kbytes FLASH EPROM.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>position 2-3 and 4-5</td>
<td>Selects 32Kbytes SRAM or EEPROM.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>position 1-6</td>
<td>Selects 32Kbytes EPROM.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 24: 5 Pins Jumpers Table

2 Pins Jumpers

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Connection</th>
<th>Purpose</th>
<th>Def.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>not connected</td>
<td>Does not connect pin 26 of CN1 to +5 Vdc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Connects pin 26 of CN1 to +5 Vdc.</td>
<td></td>
</tr>
<tr>
<td>J6</td>
<td>not connected</td>
<td>SRAM on IC4 and SRAM+RTC on IC10 are backed up only by eventual external battery.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>SRAM on IC4 and SRAM+RTC on IC10 are backed up by internal battery and by eventual external battery.</td>
<td></td>
</tr>
<tr>
<td>J8</td>
<td>not connected</td>
<td>Does not connect external Watch Dog circuitry to reset circuitry.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Connects external Watch Dog circuitry to reset circuitry.</td>
<td></td>
</tr>
<tr>
<td>J22</td>
<td>not connected</td>
<td>Does not connect microcontroller hardware serial transmit signal to pin 2 of CN3A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Connects microcontroller hardware serial transmit signal to pin 2 of CN3A.</td>
<td></td>
</tr>
<tr>
<td>J23</td>
<td>not connected</td>
<td>Does not connect microcontroller hardware serial receive signal to pin 5 of CN3A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Connects microcontroller hardware serial receive signal to pin 5 of CN3A.</td>
<td></td>
</tr>
<tr>
<td>JS1, JS2</td>
<td>not connected</td>
<td>Do not connect termination and forcing circuitry to serial communication line A in RS 422-485.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Connect termination and forcing circuitry to serial communication line A in RS 422-485.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 25: 2 Pins Jumpers Table
FIGURE 26: JUMPERS, MEMORIES AND BATTERY LOCATION ON COMPONENT SIDE
3 PINS JUMPERS

<table>
<thead>
<tr>
<th>JUMPERS</th>
<th>CONNECTION</th>
<th>PURPOSE</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J7</td>
<td>position 1-2</td>
<td>Connects direction signal for RS 485 serial communication.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Connects direction signal for RS 422 serial communication.</td>
<td>*</td>
</tr>
<tr>
<td>J18</td>
<td>position 1-2</td>
<td>Connects pin number 14 of microcontroller (P3.2, /INT0) to interrupt signal /INT of ABACO® I/O BUS.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Connects pin number 14 of microcontroller (P3.2, /INT0) to software serial line receive signal.</td>
<td></td>
</tr>
<tr>
<td>J19</td>
<td>position 1-2</td>
<td>Connects pin number 35 of microcontroller (/EA) to +5 Vdc.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Connects pin number 35 of microcontroller (/EA) to ground.</td>
<td></td>
</tr>
<tr>
<td>J20</td>
<td>position 1-2</td>
<td>Connects pin number 32 of microcontroller (/PSEN) to ground.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Connects pin number 32 of microcontroller (/PSEN) to control logic.</td>
<td></td>
</tr>
<tr>
<td>J24</td>
<td>position 1-2</td>
<td>Connects microcontroller hardware serial line receive signal to RS 232 driver.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Connects microcontroller hardware serial line receive signal to RS 422-485 driver.</td>
<td></td>
</tr>
<tr>
<td>JS3</td>
<td>position 1-2</td>
<td>Connects pin number 1 of CN3A to GND.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Connects pin number 1 of CN3A to +5 Vdc.</td>
<td></td>
</tr>
<tr>
<td>JS4</td>
<td>position 1-2</td>
<td>Connects pin number 1 of CN3B to GND.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Connects pin number 1 of CN3B to +5 Vdc.</td>
<td></td>
</tr>
<tr>
<td>JS6</td>
<td>position 1-2</td>
<td>Enables Vref = 2,490 Vdc.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>position 2-3</td>
<td>Enables Vref = 5,000 Vdc.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 27: 3 PINS JUMPERS table
FIGURE 28: JUMPERS LOCATION ON SOLDER SIDE
VISUAL FEEDBACK

GPC® 323 board is provided with four LEDs to signal status conditions, as described in the following table:

<table>
<thead>
<tr>
<th>LEDs</th>
<th>COLOUR</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD1</td>
<td>Red</td>
<td>When ON, indicates the presence of +5 Vdc power supply voltage.</td>
</tr>
<tr>
<td>LD2</td>
<td>Red</td>
<td>When ON, indicates the activation of the external Watch Dog circuitery.</td>
</tr>
<tr>
<td>LD3</td>
<td>Green</td>
<td>Timed activity LED (spot) software manageable.</td>
</tr>
<tr>
<td>LD4</td>
<td>Green</td>
<td>User activity LED software manageable.</td>
</tr>
</tbody>
</table>

Figure 29: Visual feedback table

The main purpose of these LEDs is to give a visual indication of the board status, making easier the operations of system working verify. To easily locate these LEDs on the board, please refer to figure 9.

CONFIGURATION INPUT

GPC® 323 board is provided with one 8 pins dip switch (DSW1), typically used for system configuration, five of its pins are software readable by the User (DIP 1-4, 8), two pins are used for memory configuration selection (DIP 5, 6), one pin is not used (DIP 7). The most frequent applications are: working condition selection or on board firmware parameters setting. The combination present on dip switch is in complemented logic (0 -> dip On and 1 -> dip OFF) and can be read performing a read operation at the address decided by the on board control logic for the dip switch. For further informations please refer to the paragraphs “I/O MAPPING” and “MEMORY MAPPING”, while to easily locate the dip switch please refer to figure 9.

BACK UP

GPC® 323 has an on board lithium battery BT1 for the back up of SRAM and RTC content when power supply is switched off. Jumper J6 connects physically the battery so it can be disconnected to save its duration whenever back up is not needed. By CN2 connector it is possible to connect an external battery: configuration of jumper J6 does not affect the working of this battery and it can replace BT1 completely. The user can order an external battery (2.1 Ah) ready to be connected to CN2 with the code: LITIO.

Please refer to the paragraph “ELECTRIC FEATURES” to choose the type of the external back up battery, to easily locate the batteries please see figures 9 and 26.
INTERRUPTS MANAGEMENT

One of the most important GPC® 323 features is the powerful interrupts management. Here is a short description of how the board's hardware interrupt signals can be managed; a more complete description of the hardware interrupts can be found in the microprocessor data sheets or in appendix B of this manual.

- CPU inside devices -> Possible sources of internal interrupt events are: timer 0÷2; serial port 0, 1; External interrupts 0÷5; internal watch dog, etc..
- Real Time Clock -> It is open collector wire-anded to pin /INT1 = P3.3 of CPU.
- Power failure -> It is open collector wire-anded to pin /INT1 = P3.3 of CPU.
- Software serial -> It is connected in open collector to pin /INT0 = P3.2 of CPU, according to the connection of jumper J24.
- ABACO® I/O BUS -> The /INT BUS signal of CN1 is connected to pin /INT0 = P3.2 of CPU, according to the connection of jumper J24. The /NMI BUS signal of CN1 is connected to pin T2 = P1.0 of CPU.

The last described connection is really important for two different reasons: each activation of /NMI BUS signal can generate an interrupt or each /NMI BUS signal change can be counted. The /NMI BUS signal management is defined by software programmation of timer 2, so the user can select the favourite mode. This feature is really important especially when GPC® 323 is connected to external card as ZBT xxx and ZBR xxx, in fact optocoupled digital signals can be counted or they can generate standard interrupts.

The microprocessor features a programmable priority structure that manages the case of contemporary interrupts. The addresses of the interrupt response subroutines can be software programmed by the user placing them on the proper code areas while the interrupts priority level and activation are software programmable through internal CPU registers. So the user program has always the possibility to react promptly to every external event, deciding also the priority of interrupts.

POWER FAILURE

In addition to the CPU controlled power management circuitry, GPC® 323 card also features an efficient power failure circuitry. Through jumper J8 this latter can be connected to the microprocessor /INT0 interrupt signal.

The task of this circuitry is to keep under control power supply voltage and activate on output to request a CPU action when this voltage reaches a value lower than a threshold of 52 mV above the reset intervent.

Please remark that the time interval between power failure activation and reset activation changes according to the type of supply being used; it is however about 100 µsec, long enough only to execute a fast response routine (for example to save a flag in the backed SRAM).

Typical use of power failure is to inform the board about the imminent power supply black out, so the CPU can save appropriate information.
MEMORY SELECTION

On GPC® 323 can be mounted 98K bytes of memory divided in several configurations, as described in the following table:

<table>
<thead>
<tr>
<th>IC</th>
<th>DEVICE</th>
<th>SIZE</th>
<th>CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>SRAM/EEPROM</td>
<td>32K Bytes</td>
<td>J2 in 2-3 and 4-5</td>
</tr>
<tr>
<td></td>
<td>EPROM</td>
<td>32K Bytes</td>
<td>J2 in 3-4</td>
</tr>
<tr>
<td></td>
<td>FLASH EPROM</td>
<td>32K Bytes</td>
<td>J2 in 1-2 and 3-4</td>
</tr>
<tr>
<td>4</td>
<td>SRAM/EEPROM</td>
<td>32K Bytes</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>EPROM</td>
<td>32K Bytes</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Serial EEPROM</td>
<td>512÷2048 Bytes</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>SRAM+RTC</td>
<td>256 Bytes</td>
<td>-</td>
</tr>
</tbody>
</table>

FIGURE 30: MEMORY SELECTION TABLE

The sockets IC3, IC4 and IC5 follow the JEDEC standard, so the mounted memory devices must have JEDEC pin outs, to easily locate them please refer to figure 26. The jumpers configurations described on figure 30 only set the sockets for the indicated memory device, but there are some other jumpers that set the memory addressing map; for this information, please refer to "MEMORY ADDRESSES" paragraph.

Normally GPC® 323 is supplied in its default configuration with 32K SRAM on IC 4 and 512 byte serial EEPROM on IC 10; each different configurations can be defined during order phase or self mounted by the user. Below are reported the abbreviation of the possible memory options:

- .32K -> 32K x 8 SRAM
- .32KMOD -> 32K x 8 backed SRAM
- .32EE -> 32K x 8 parallel EEPROM
- .32KF -> 32K x 8 parallel FLASH EPROM
- .EE02 -> 2K bit (256 byte) serial EEPROM
- .EE02 -> 8K bit (1024 byte) serial EEPROM
- .EE02 -> 16K bit (2048 byte) serial EEPROM

For further information and prices please contact directly grifo®.

SOLDER JUMPERS

The solder jumpers called JSxx are connected by a thin copper connection on the solder side. So, if one of their configurations has to be changed, the user must first cut this connection using a sharpened cutter, then make the new connection using a low power soldering tool and some non corrosive tin.
POWER SUPPLY VOLTAGES

GPC® 323 board is provided with and efficient circuitry that solves in an efficient and comfortable way the problem of power supply in any employ condition. Here follows the list of the possible configurations for power supply section:

- **No power supply section (default):**
 The board must be supplied by a +5 Vdc voltage provided directly on the specific pins of CN1 (GND on pin 25).

- **Linear power supply section (option .ALIM12):**
 The board must be supplied by a 6÷12 Vac alternate voltage, or the corresponding continuous voltage, that must be provided to pins 1 and 2 of CN4.

- **Switching power supply section (option .SW):**
 The board must be supplied by a 8÷24 Vac alternate voltage, or the corresponding continuous voltage (12÷34 Vdc), that must be provided to pins 1 and 2 of CN4.

Regardless the type of supply section chosen, the GPC® 323 board is always provided with an efficient protection circuitry that protects the board against voltage peaks or noise. Please remark that the desired supply section must be explicitely specified in the order; in fact the choice implies a different hardware configuration that must be performed by the grifo® technical personnel.

Jumper J1 connects positive pin (+5 Vdc) of on board supply to ABACO® I/O BUS connector so it must be disconnected only when a board provided with power supply section is connected to a system provided with its own power supply section.

To reduce the CPU consumption IDLE and STOP operating MODEs can be used. For further information about this subject please refer to appendix B of this manual or CPU manufacturers documentation. For further information please refer to paragraph “ELECTRIC FEATURES”.

IN SYSTEM PROGRAMMING

One of the most important features of GPC® 323 is the possibility to use the PHILIPS 89CRx+ /2 new microprocessors that support the in system and in application programming (ISP). Below are listed the sequence of operations that must be performed by the user to use this features:

1) develop the application program through a proper software tools that generate an executable code;
2) connect jumper J19 in position 1-2 and J20 in position 1-2;
3) connect RS 232 serial line A to a personal computer free COM line;
4) power on the card;
5) program the microprocessor internal FLASH EPROM by using the specific program supplied by PHILIPS: WINISP.
6) power off the card;
8) connect J19 in position 2-3 and J20 in position 2-3;
9) power on the card: the programmed application programm will start execution from internal ROM.

The ISP reduces the total application cost, in fact it eliminates the requirements of EPROM, EPROM programmer, external FLASH EPROM, etc. For further informations on in system programming please refer to specific technical documentation from PHILIPS.
SERIAL COMMUNICATION SELECTION

Please remember that if not differently specified during the order phase, the card is delivered in its default configuration with two RS 232 serial line.

The serial line A is available on connector CN3A and can be buffered in RS 232, RS 422, RS 485 or current loop electric standard. By hardware can be selected which one of these electric standard is used, through jumpers connection (as described in the previous table). By software the serial line can be programmed to operate with 8, 9 bits per character, no parity, 1 stop bits at standard or no standard baud rates, through some some CPU internal register setting.

Some components necessary for RS 422 and RS 485 communication are not mounted and not tested on the default configuration card, so the first not standard configuration must always be executed by grifo® technician; then the user can change himself the configuration, following the below description (jumpers not mentioned in the below description have no influence on communication):

- SERIAL LINE A CONFIGURED IN RS 232 (default configuration)

<table>
<thead>
<tr>
<th>J7</th>
<th>J22, J23</th>
<th>J24</th>
<th>JS1, JS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>don't care</td>
<td>connected</td>
<td>position 2-3</td>
<td>not connected</td>
</tr>
</tbody>
</table>

 IC25 = driver MAX 202
 IC26 = no component
 IC27 = no component
 IC28 = no component
 IC29 = no component

- SERIAL LINE A CONFIGURED IN CURRENT LOOP (.CLOOP option)

<table>
<thead>
<tr>
<th>J7</th>
<th>J22, J23</th>
<th>J24</th>
<th>JS1, JS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>don't care</td>
<td>not connected</td>
<td>position 2-3</td>
<td>not connected</td>
</tr>
</tbody>
</table>

 IC25 = no component
 IC26 = driver HCPL 4100
 IC27 = no component
 IC28 = driver HCPL 4200
 IC29 = no component

Please remark that current loop serial interface is passive, so it must be connected an active Current Loop serial line, that is a line provided with its own power supply. Current loop interface can be employed to make both point to point and multi point connections through a 2 wires or a 4 wires connection as described in figures 16÷18.

- SERIAL LINE A CONFIGURED IN RS 422 (.RS422 option)

<table>
<thead>
<tr>
<th>J7</th>
<th>J22, J23</th>
<th>J24</th>
<th>JS1, JS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>position 1-2</td>
<td>not connected</td>
<td>position 2-3</td>
<td>(*)</td>
</tr>
</tbody>
</table>

 IC25 = no component
 IC26 = no component
 IC27 = driver SN75176 or MAX 483
 IC28 = no component
 IC29 = driver SN75176 or MAX 483

Status of signal DIR, which is software managed, allows to enable or disable the transmitter as follows:

- DIR = low level = logic state 0 -> transmitter enabled
- DIR = high level = logic state 1 -> transmitter disabled

In point to point connections, signal DIR can be always kept low (transmitter always enabled), while in multi point connections transmitter must be enabled only when a transmission is requested.
Figure 31: Serial Communication Drivers Location
- SERIAL LINE A CONFIGURED IN RS 485 (RS485 option)

<table>
<thead>
<tr>
<th>IC</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC25</td>
<td>no component</td>
</tr>
<tr>
<td>IC26</td>
<td>no component</td>
</tr>
<tr>
<td>IC27</td>
<td>driver SN75176 or MAX 483</td>
</tr>
<tr>
<td>IC28</td>
<td>no component</td>
</tr>
<tr>
<td>IC29</td>
<td>no component</td>
</tr>
</tbody>
</table>

J7 = position 2-3
J22, J23 = not connected
J24 = position 2-3
JS1, JS2 = (*)

In this modality the signals to use are pins 4 and 5 of connector CN3A, that become transmission or reception lines according to the status of signal DIR, managed by software, as follows:

<table>
<thead>
<tr>
<th>DIR status</th>
<th>Logic state</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>low level</td>
<td>0</td>
<td>transmitter enabled</td>
</tr>
<tr>
<td>high level</td>
<td>1</td>
<td>transmitter disabled</td>
</tr>
</tbody>
</table>

This kind of serial communication can be used for multi point connections, in addition it is possible to listen to own transmission, so the user is allowed to verify the succes of transmission. In fact, any conflict on the line can be recognized by testing the received character after each transmission.

(*) If using the RS 422 or RS 485 serial line, it is possible to connect the terminating and forcing circuit on the line by using JS1 and JS2. This circuit must be always connected in case of point to point connections, while in case of multi point connections it must be connected only in the farest boards, that is on the edges of the communication line.

When a reset or a power on occur, signal DIR is kept to a logic level high, so in any of these two cases driver RS 485 is receiving or RS 422 driver is disabled, avoiding eventual conflicts in communication.

The serial line B is available on connector CN3B and it can be buffered only in RS 232. By mounting a MAX 202 driver on IC 13 this second serial line is hardware enabled and by software it can be managed as below described:

- µP 80C32 and compatible ones

 The serial line B is a software serial line, managed through two I/O pins of the processor (pin 4 = P1.2 = RXB and pin 5 = P1.3 = TXB). The communication parameters (baud rate, stop bit, bit x char, etc.) are software defined through some timing and some sequence of management procedure. For further information, please refer to the software tools manuals.

- µP 80C320 and compatible ones

 The serial line B is an hardware serial line, managed through the dedicated pins of the processor (pin 4 = RXB and pin 5 = TXB). The communication parameters (baud rate, stop bit, bit x char, etc.) are software defined through proper microprocessor registers setting. For further information, please refer to microprocessor data sheets.

For further informations about serial communication please refer to the examples of figures 12÷18 and paragraph "RS 422-485 DIRECTION".
SOFTWARE

A wide selection of software development tools can be obtained, allowing use of the module as a system for its own development, both in assembler and in other high level languages; in this way the user can easily develop all the requested application programs in a very short time. Generally all software packages available for the mounted microprocessor, or for the 51 family, can be used.

BASIC 323: complete development tools for MCS BASIC (interpreted BASIC language for industrial application). It needs a P.C. for console and program saving operations, while the debug, test and program operations are performed on the card. Special instructions which manage the on board peripheral devices have been added, plus the possibility to save the application on EEPROM.

BXC51: cross compiler for source files written in BASIC 323. It allows a considerable speed increment of the starting MCS BASIC program and it is completely executed on external P.C.

FORTH: complete software development tools to program the card with FORTH high level language. It needs a P.C. for user interface and it is really interesting for its fast execution and small size, of the generated code.

MCC 51: integer cross compiler for source files in standard ANSI C. It produces a source assembly file compatible with MCA 51 or with Intel macro relocatable assembler MCS 51.

MCA 51: macro cross assembler available for MS-DOS operating system in absolute and relocatable version. In this relocatable version is supplied with a linker and a library manager.

MCS 51: source level debugger and simulator. Allows to simulate microcontrollers of family 51 and to monitor a program's status. It is executed on P.C. without any additional hardware and it allows loading of HEX and SYMBOLIC files, breakpoint setting, instruction execution in trace mode, registers and memory dump, etc.

MCK 51: it is the sum of MCC 51 and MCA 51 and it is a complete C compiler with an output file type compatible with MCS 51.

HI TECH C 51: cross compiler for C source program. It is a powerful software tool that includes editor, C compiler, assembler, optimizer, linker, library, and remote symbolic debugger, in one easy to use integrated development environment.

SYS51CW: cross compiler for C source program. It is a powerful software tool that includes editor, C compiler, assembler, optimizer, linker, library, simulator and remote symbolic debugger, included in an easy to use integrated development environment for Windows.

SYS51PW: cross compiler for PASCAL source program. It is a powerful software tool that includes editor, PASCAL compiler, assembler, optimizer, linker, library, simulator and remote symbolic debugger, included in an easy to use integrated development environment for Windows.

MDP: monitor debugger program able to load and debug each HEX Intel files for 51 microprocessor family. It is provided of the standard commands available on in circuit emulator and requires only an external P.C. connected through a serial line.
DDS MICRO C 51: low cost ross compiler for C source program. It is a powerful software tool that includes editor, C compiler (integer), assembler, optimizer, linker, library, and remote debugger, in one easy to use integrated development environment. There are also included the library sources and many utilities programs.

SOFTICE: It is a remote symbolic debugger with cross assembler. It is provided of the standard commands available on in circuit emulator and requires only an external P.C. connected through a serial line. There is an high level user interface that can visualize all the processor status in a multiwindow visualization.

NOICE 51: It is a PC hosted debugger consists of a target specific DOS program, NOICExxx.EXE, and a target resident monitor program. The two programs communicate via RS 232. NOICE includes: source level debug; a disassembler; a file viewer; memory display and editing; a virtually unlimited number of breakpoints; hardware free single step; definition of symbols; the ability to record and play back files of commands; on line help.

OPEN 51/UNI: in circuit emulator for the 51 family. It is a powerfull hardware and software tool that includes: source level debugging and symbolic debugging; project management; built-in multi-file editor; execution of external compilers; debugging of several modules at the same time; built-in disassembler; source level step and trace functions; animate functions; inserting and deleting of breakpoints on the source level; watching and modifying variables on symbol and absolute level.

BASCOM 8051: cross compiler for BASIC source program. It is a powerful software tool that includes editor, BASIC compiler and simulator included in an easy to use integrated development environment for Windows. Many memory models, data types and direct use of hardware resource instructions are available.

GET 51: it is a complete program with editor, communication driver and mass memory management for all ’51 family cards. This program developed by grifo® allows to operate in the best conditions when BASIC 324, BXC51, MDP, FMO 52 software tools are used. The program is menu driven and mouse driven. It is designed to run under MS-DOS but can run also in MACINTOSH environment with VIRTUAL-PC. It is delivered in MS-DOS 3”1/2 floppy disks.

FMO 52: monitor debugger program able to load and debug each HEX Intel files for 51 microprocessor family. It is provided of the standard commands available on in circuit emulator and requires only an external P.C. connected through a serial line. It is preconfigured to work directly with BASCOM 8051 and GET51 software tools. It can also program the on board FLASH EPROM with the user application program and then execute it in autorun mode.

SOFTICE: remote symbolic debugger and cross assembler. It is provided with the typical commands available on an hardware emulator but it also requires a PC connected by a serial line. An high level user interface, with several different windows, shows the status of microprocessor and target card.
ADDRESSES AND MAPS

INTRODUCTION

In this chapter are reported all information about card use, related to hardware and software. For example, the registers addresses and the memory allocation are described below.

ADDRESSES

The card devices addresses are managed by a specific control logic, realized with programmable array logic. This control logic allocates memory and peripheral devices in a comfortable mode for the user. The available microprocessors address 64K bytes of code memory and 64K bytes of data memory and the control logic maps the on board memory and peripheral devices, inside these addresses spaces. Control logic sets size, type and addresses of memory devices through jumper J2; at the same time it sets I/O addresses always in its reserved memory area to avoid conflicts. Summarizing the control logic allocates:

- 32K bytes of EPROM on IC 5;
- 32K bytes of SRAM on IC 4;
- 32K bytes of SRAM, EPROM, EEPROM, FLASH EPROM on IC 3;
- ABACO® I/O BUS;
- Dip Switch DSW1;
- User LEDs;
- RUN/DEBUG selector (status of switch 8 on DSW1);
- External watch dog retrigger;
- Real time clock + 256 bytes of SRAM;

The addresses of all these devices are described in the following paragraphs and can't be set with different value. Serial EEPROM on IC10, RTC and SRAM on IC12 and optional A/D converter on IC24 is managed always by control logic but it is not allocated in memory space, in fact this device is drived through CPU I/O lines with a synchronous communication.

MEMORY ADDRESSES

On the GPC® 323 three different memory configurations can be used. The configuration must be selected, with switches 5 and 6 of DSW1, both according to used software tools and user requests and/or application features. The following figures describe available memory configurations, with proper switches setting. The position not described for switches are reserved for future expansions.
MEMORY CONFIGURATION 0

FIGURE 32: MODE 0 MEMORY CONFIGURATION

Configuration of switches 5 and 6 of DSW1: dip 5 OFF; dip 6 OFF.
Used by software tools as: BASIC 323; BXC51; HI TECH C; DDS MICRO C; etc.
Figure 33: Mode 1 Memory Configuration

Configuration of switches 5 and 6 of DSW1: dip 5 ON; dip 6 OFF.

Used by software tools as: HI TECH C; DDS MICRO C; etc.
Configuration of switches 5 and 6 of DSW1: dip 5 ON; dip 6 ON.
Used by software tools as: MDP; LUCIFER HI TECH C; FMO 52; etc.
ITALIAN TECHNOLOGY

ABACO® I/O BUS ADDRESSES

GPC® 323 on board control logic performs also ABACO® I/O BUS management, defining its allocation addresses. In detail, as shown in the I/O addresses table, BUS locations are addressed in the range FF80H÷FFFFH. Any I/O access to an address in this range enables the /IORQ signal and all the other control signals on CN1.

I/O ADDRESSES

I/O addresses are located in the last 256 bytes (128 for ABACO® I/O BUS and 128 bytes for watchdog retrigger, RUN/DEBUG reading and real time clock) of the 64K bytes data microprocessor addressing space. Next table shows name, addresses, meanings and direction of peripheral devices registers (only the external ones to microprocessor):

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>REG.</th>
<th>ADDRESS</th>
<th>R/W</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABACO® I/O BUS</td>
<td>I/OBUS</td>
<td>FF80H÷FFFF7H</td>
<td>R/W</td>
<td>ABACO® I/O BUS addresses.</td>
</tr>
<tr>
<td>Spot LED</td>
<td>SPOT</td>
<td>FFF8H</td>
<td>W</td>
<td>Timed activity LED LD3 (spot) activation register.</td>
</tr>
<tr>
<td>Buzzer and user activity LED</td>
<td>LD4BZ</td>
<td>FFF9H</td>
<td>W</td>
<td>Timed activity LED LD4 and buzzer management register.</td>
</tr>
<tr>
<td>Watchdog</td>
<td>WDOG</td>
<td>FFF8H</td>
<td>R</td>
<td>Watchdog retrigger register.</td>
</tr>
<tr>
<td>Dip switch</td>
<td>DSW1</td>
<td>FFF9H</td>
<td>R</td>
<td>DSW1 (dip 1, 2, 3, 4, 8) and battery status acquisition register.</td>
</tr>
<tr>
<td>PPI 82C55</td>
<td>PDA</td>
<td>FFFCH</td>
<td>R/W</td>
<td>Port A data register.</td>
</tr>
<tr>
<td></td>
<td>PDB</td>
<td>FFFDH</td>
<td>R/W</td>
<td>Port B data register.</td>
</tr>
<tr>
<td></td>
<td>PDC</td>
<td>FFFEH</td>
<td>R/W</td>
<td>Port C data register.</td>
</tr>
<tr>
<td></td>
<td>CNT</td>
<td>FFFFH</td>
<td>R/W</td>
<td>Command and control register.</td>
</tr>
</tbody>
</table>

Figure 35: I/O addresses table

For further information about register meanings, please refer to next chapter called "PERIPHERAL DEVICES SOFTWARE DESCRIPTION".
PERIPHERAL DEVICES SOFTWARE DESCRIPTION

In the previous paragraphs are described the external registers addresses, while in this one there is a specific description of registers meaning and function (please refer to I/O addressing tables, for the registers name and addresses values). For microprocessor internal peripheral devices, not described in this paragraph, or for further information, please refer to manufacturing company documentation. In the following paragraphs the D7÷D0 and D0÷7 indications denote the eight bits of the combination used in I/O operations.

BUZZER

Buzzer is activated by performing a "write operation" with bit D0=1 at the address of register LD4BZ; vice versa buzzer is disabled by performing the same operation with bit D0=0. The remaining 7 bits of register LD4BZ must be defined according to previous setting for avoiding status modifications on other devices, in this case LED LD4.

LD4BZ register is reset (all bits to 0) after Reset or power on, maintaining disabled the buzzer circuit.

ACTIVITY LED

Activity LED LD4 is enabled by performing a "write operation" with bit D7=1 at the address of register LD4BZ; vice versa LED is disabled by performing the same operation with bit D7=0. The remaining 7 bits of register LD4BZ must be defined according to previous setting for avoiding status modifications on other devices, in this case buzzer BZ1.

LD4BZ register is reset (all bits to 0) after Reset or power on, maintaining disabled the activity LED.

EXTERNAL WATCH DOG

Retrigger operation of GPC® 323 external watch dog circuit is performed with a simple read operation at the address of register WDOG. This register shares the same address of other on board peripherals, but no conflict are generated in fact retrigger operation is an input operation and the read data has no meaning. To avoid external watch dog activation is necessary to retrigger its circuit at regular time periods and the duration of these periods must be smaller than intervention time. If retrigger doesn't happen as before described and J8 is connected, when intervention time is elapsed, the card is reset. The default intervention time is about 1420 msec., watch dog activation is visualized by LED LD2.

CPU PERIPHERALS

For further information on microprocessor internal peripheral device, please refer to specific documentation of the manufacturing company or to appendix B of this manual.
SPOT LED

Spot LED LD3 is enabled by performing a "write operation" to the address of register SPOT. This operation enables the LED for an interval of about 300 msec then the LED turns off automatically. The value to write to the SPOT register is meaningless and so can be any value. The main purpose of this LED is to indicate the working condition of application program without introducing programming difficulties or to signal efficiently the presence of an event that requires a prompt reaction.

DIP SWITCH DSW1 AND RUN/DEBUG

The on board DSW1 dip switch status can be obtained by software, through a simple "read operation" at the DSW1 register address. The correspondence between register bits and dip switch is as follows:

<table>
<thead>
<tr>
<th>Register Bit</th>
<th>Dip Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7</td>
<td>DSW1.8</td>
</tr>
<tr>
<td>D3</td>
<td>DSW1.4</td>
</tr>
<tr>
<td>D2</td>
<td>DSW1.3</td>
</tr>
<tr>
<td>D1</td>
<td>DSW1.2</td>
</tr>
<tr>
<td>D0</td>
<td>DSW1.1</td>
</tr>
</tbody>
</table>

As shown above, only 5 bits in the combination read are affected by dip switch status, other switches are used for memory configuration (please refer to paragraph “MEMORY MAPPING”) or are reserved.

Switch DSW1.8 is the RUN or DEBUG selector, modality specific of some grifo® software packages. Please remark that, by default, logic level 0 corresponds to RUN mode while logic level 1 corresponds to DEBUG mode.

Reading DSW1 register by software, the user obtains a negated bits combination, in fact "ON" position corresponds to logic level 0 and "OFF" position cooresponds to logic level 1.

SERIAL EEPROM

For software management of serial EEPROM module of IC10, please refer to specific manufacturer documentation. This manual reports no software information because management of this component is complex and requires a deep knowledge, anyway the user can use the demo programs supplied with the card. Please remark that first 32 bytes (0÷31) are reserved so they should not be changed. The board control logic alloes to realize a serial communication with I 2 C bus standard protocol, through two I/O microprocessor pins. The only necessary information is the electric connection:

- **DATA line (SDA)** -> P3.4 (input/output) of CPU
- **CLOCK line (SCL)** -> P1.7 (output) of CPU

Please remark that A0 and A1 of this component's slave address are bound to logic 0 while A2 is bound to logic 1.

Logic 0 means a connection to 0 Vdc and logic 1 means a connection to 5 Vdc.
BACKED SRAM + SERIAL RTC

For software management of serial SRAM + RTC backed module of IC12, please refer to specific manufacturer documentation. This manual reports no software information because management of this component is complex and requires a deep knowledge, anyway the user can use the demo programs supplied with the card. Please remark that the presence of this components limits maximum size of serial EEPROM on IC10 to 1024 bytes (24c08). The board control logic alloes to realize a serial communication with FC bus standard protocol, through two I/O microprocessor pins. The only necessary information is the electric connection:

- DATA line (SDA) -> P3.4 (input/output) of CPU
- CLOCK line (SCL) -> P1.7 (output) of CPU

Please remark that A0 of this component's slave address is bound to logic 0. Logic 0 means a connection to 0 Vdc and logic 1 means a connection to 5 Vdc.

A/D CONVERTER

For software management of optional A/D converter on IC14, please refer to specific manufacturer documentation. This manual reports no software information because management of this component is complex and requires a deep knowledge, anyway the user can use the demo programs supplied with the card. The board control logic alloes to realize a serial communication through four I/O microprocessor pins. The only necessary information is the electric connection:

- P3.5 (input) -> linea DATA OUT
- P1.6 (output) -> linea /CS
- P3.4 (output) -> linea DATA IN
- P1.1 (output) -> linea I/O CLOCK

Logic 0 means a connection to 0 Vdc and logic 1 means a connection to 5 Vdc.

BATTERY STATUS

Back up circuitery for SRAM on IC4 and RTC+SRAM on IC12 monitors continuously the voltage level of the battery connected and reports on a TTL signal the whether such level is lower than a threshold whose typical value, reported by manufacturer documentation, is 2.265 Vdc. The battery status TTL signal can be obtained with a read access to allocation address of register DSW1.

D5 -> Battery status

If bit D5 of register DSW1 is 1 then back up supply voltage level for SRAM on IC4 and RTC+SRAM on IC12 is above 2.265 Vdc, if it is 0 then that level is under 2.265 Vdc.
PPI 82C55

This external peripheral device is managed through 4 registers: one status register (CNT) and three data registers (PDA, PDB, PDC). The data registers are available both for read operation (to obtain signal status) and for write operation (to set signal status) with the correspondence described in figure 23. The PPI 82C55 can work in three different modes:

MODE 0 = it provides two 8 bits bidirectional ports (A, B) and two 4 bits bidirectional ports (C LOW, C HIGH); output signals are latched and input signals are not latched; no handshake signals are provided.

MODE 1 = it provides two 12 bits ports (A+C LOW and B+C HIGH) where ports A and B are used as 8 I/O lines and port C are used as 4 handshake lines. Both inputs and outputs are latched.

MODE 2 = it provides a 13 bits port (A+C3÷27) where port A is used as 8 I/O lines and the 5 bits of port C are used as handshake, and a 11 bits port (B+C0÷22) where port B is used as 8 I/O lines and the 3 bits of port C are used as handshakes. Both inputs and outputs are latched.

The device is programmed writing an 8 bits word in the status register CNT, with the following bit meaning:

\[
\text{CNT} = SF \ M_1 \ M_2 \ A \ CH \ M_3 \ B \ CL
\]

where

- **SF** = mode Set Flag: if actived (1) the device is enabled for standard I/O operation
- **M1 M2** = mode selection:
 - 0 0 = mode 0
 - 0 1 = mode 1
 - 1 X = mode 2
- **A** = port A direction: 1=input; 0=output
- **CH** = port C HIGH direction: 1=input; 0=output
- **M3** = mode selection: 1=mode 1; 0=mode 0
- **B** = port B direction: 1=input; 0=output
- **CL** = port C LOW direction: 1=input; 0=output

After Reset or power on PPI 82C55 is programmed in mode 0 with all three ports in input; in this way any connection of PPI 82C55 signals can be used without conflict problems.
RS 422-485 DIRECTION

To manage the RS 485 line direction or the RS 422 transmission driver enabling, on GPC® 323 is used a proper digital I/O line of microprocessor, named DIR. This line is driven by CPU pin 7 (P1.5) and it has the following functionality:

- RS 485:
 - DIR = 0 -> RS 485 line transmitting
 - DIR = 1 -> RS 485 line receiving
- RS 422:
 - DIR = 0 -> RS 422 transmitter driver enabled
 - DIR = 1 -> RS 422 transmitter driver disabled

DIR signal is set (1) after reset or power on, maintaining enabled the RS 485 reception and maintaining disabled the RS 422 transmission; in this way each conflict is eliminated.
EXTERNAL DEVICES FOR GPC® 323

GPC® 323 can be connected to a wide range of block modules and operator interface system produced by grifo®, or to many system of other companies. The on board resources can be expanded with a simple connection to the numerous peripheral grifo® boards, both intelligent and not, thanks to its standard BUS ABACO® connector. Even cards with ABACO® I/O BUS can be connected, by using the proper mother boards. Hereunder some of these cards are briefly described; ask the detailed information directly to grifo®, if required.

ADC 812
Analog to Digital Converter, 12 bits, multi range
DAS (Data Acquisition System) multi range 8 channels 12 bit A/D conversion lines; track and hold; 6µs conversion time; range ±10, ±5, +10, +5Vdc or 0÷20, 4÷20mA; analog inputs connections through quick terminal screw connectors; ABACO® I/O BUS interface; direct mounting for DIN 247277-1 and 3 rails; 4 type dimension.

DAC 212
Digital to Analog Converter 12 bits, multi range
Digital to Analog converter; multi range 2 channels 12 bits ± 10, +10 Vdc output; analog outputs connections through quick terminal screw connectors; ABACO® I/O BUS interface; direct mounting for DIN 247277-1 and 3 rails; 4 type dimension.

CAN 14
Control Area Network, 1 channel, galvanically insulated
UART CAN SJA1000; 1 serial channels galvanically insulated; ABACO® I/O BUS interface; 4 type dimension; support of CAN 2.0B protocol; transfer rate up to 1M bit/sec; direct mounting for DIN 247277-1 and 3 rails.

KDL xxx - KDF xxx
Keyboard Display interface - LCD or Fluorescent
Interface with Fluorescent or LCD display, LEDs backlit, 20x2 or 20x4 characters; up to 24 keys matrix keyboard connector. It is directly driven by 16 TTL I/O lines; High level languages supported.

QTP 24 - QTP 24P
Quick Terminal Panel 24 keys with Parallel interface
Intelligent user panel equipped with Fluorescent or LCD display, LEDs backlit, 20x2 or 20x4 characters; RS 232, RS 422, RS 485 or current loop serial line; serial E2 for set up and message. Possibility of re-naming keys, LEDs and panel name by inserting label with new name into the proper slot; 24 Keys and 16 LEDs with blinking attribute and buzzer manageable by software; built in power supply; RTC option, reader of magnetic badge and relay. The QTP 24P is low cost no intelligent (passive) version. It is directly driven from 16 TTL I/O lines; high level languages supported.
QTP 16 - QTP 16P

Quick Terminal Panel 16 keys with Parallel interface

Intelligent user panel equipped with Fluorescent or LCD display, LEDs backlit, 20x2 or 20x4 characters; RS 232, RS 422, RS 485 or current loop serial line; serial E2 for set up and messages; buzzer manageable by software; 4 readable auxiliary opto in lines; power supply 5 Vdc. The QTP 16P is low cost no intelligent (passive) version. It is directly driven from 16 TTL I/O lines.

QTP G28

Quick Terminal Panel - LCD Graphic, 28 keys

LCD display 240x128 pixels, CFC backlit; Optocoupled RS 232 line and additional RS 232/422/485/Current Loop line; CAN line controller; E² for set up; RTC and RAM lithium backed; primary graphic object; possibility of re-naming keys, LEDs and panel name; 28 keys and 16 LEDs with blinking attribute and buzzer manageable by software; Buzzer; built in power supply; reader of magnetic badge and relay option.

OBI N8 - OBI P8

Opto BLOCK Input NPN-PNP

Interface between 8 NPN, PNP optocoupled and displayed input lines, with screw terminal and ABACO® standard I/O 20 pins connector; power supply section; connection for DIN Ω rails.

TBO 01 - TBO 08

Transistor BLOCK Output

Interface for ABACO® standard I/O 20 pins connector; 16 or 8 transistor output lines 45 Vdc 3 A open collector; screw terminal; optocoupled and displayed lines; connection for DIN 247277-1 and 3 rails.

XBI R4 - XBI T4

miXed BLOCK Input-Output

Interface for ABACO® standard I/O 20 pins connector; 4 Relays 3A with MOV or 4 optocoupled Transistors 3A open collectors; 4 input lines optocoupled; screw terminal; connection for DIN Ctype and Ω rails.

FBC xxx

Flat Block Contactxxx pins

This interconnection system "wire to board" allows the connection to many type of flat cable connectors to terminal for external connections. Connection for DIN Ω rails.

IBC 01

Interface Block Comunication

Conversion card for serial communication, 2 RS 232 lines; 1 RS 422-485 line; 1 optical fibre line; selectable DTE/DCE interface; quick connection for DIN 46277-1 and 3 rails.

DEB 01

Didactis Experimental Board

Supporting card for 16 TTL I/O lines use. It includes: 16 keys, 16 LEDs, 4 digits, 16 keys matrix keyboard, Centronics printer interface, LCD display and fluorescent display interface, GPC® 68 I/O connector, field connection with screw terminal.
FIGURE 36: GPC® 323 AVAILABLE CONNECTIONS DIAGRAM

- Options for power supply:
 - +5 Vdc
 - 12 - 34 Vdc
 - 8 - 24 Vac (Switching)

- Direct connection to QTP 24:
 - RS 232, RS 422, RS 485, Current Loop

- Options for serial line:
 - RS 232, RS 422, RS 485, Current Loop

- ABACO® I/O BUS:
 - ANY I/O TYPE
 - ZBx series
 - ABACO® BUS
 - IPC 52, UAR 24, etc.
 - ABB 03 or ABB 05, etc.

- External lithium battery 3.6 V to RAM back up

- Current to voltage converter with 8 A-V modules

- Digital TTL input/output:
 - to XBI-01, OBI-01, RBO-08 etc...
 - Relay, Transistor, Opto coupled

- 12 bit analog input:
 - Voltage +2.490 V opt. +5 Vdc
 - Current 0 - 20 mA, 4 - 20 mA

- Software or hardware serial line RS-232
MCI 64
Memory Cards Interfaces 64 MBytes
Interfacing card for managing 68 pins PCMCIA memory cards, it is directly driven from any ABACO® I/O standard connector; High level languages GDOS supported.

ZBR xxx
Zipped BLOCK Relays xx Input + xx Output
Peripheral cards family, relays outputs, equipped with housing for Ω rails mounting. Double power supply built in; 5Vdc section for powering the on board logic and an external CPU cards; second section, galvanically coupled, for the optocoupled input lines. All I/O lines are displayed by LEDs. Relays contacts are 3A and are MOV protected. All I/O connections are availables on quick terminal connectors. 1 connector interface to ABACO® I/O BUS. The ZBR serie represent the ideal complement for cards 3 and 4 type. The ZBR cards can be directly driven, through the PC parallel port, by using the PCC A26 low cost interface card. ZBR 324 -> 32 opto in, 24 relays; ZBR 246 -> 24 opto in, 16 relays; ZBR 168 -> 16 opto in, 8 relays; ZBR 84 -> 8 opto in, 4 relays.

ZBT xxx
Zipped BLOCK Transistors xx Input + xx Output
Peripheral cards family having optocoupled outputs and 3A transistor in open collector. Cards are equipped with housing for Ω rails mounting. Double power supply built in; 5Vdc section for powering the on board logic and an external CPU cards; second section, galvanically coupled, for the optocoupled input lines. All I/O lines are displayed by LEDs. All output transistors are equipped with protection against inductive loads. All I/O connections are availables on easy quick terminal connectors. Connector interface to ABACO® I/O BUS. The ZBT serie represent the ideal complement for cards 3 and 4 type. The ZBT cards can be directly driven, through the PC parallel port, by using the PCC A26 low cost interface card. ZBT 324 -> 32 opto in, 24 transistors; ZBT 246 -> 24 opto in, 16 transistors; ZBT 168 -> 16 opto in, 8 transistors; ZBT 84 -> 8 opto in, 4 transistors.

ABB 03
ABACO® Block BUS 3 slots
3 slots ABACO® mother board; 4 TE pitch connectors; ABACO® I/O BUS connector; screw terminal for power supply; connection for DIN C type and Ω rails.

ABB 05
ABACO® Block BUS 5 slots
5 slots ABACO® mother board with power supply. Double power supply built in; 5Vdc 2.5A section for powering the on board logic; second section at 24Vdc 400mA galvanically coupled, for the optocoupled input lines. Auxiliary connector for ABACO® I/O BUS. Connection for DIN Ω rails.

IPC 52
Intelligent Peripheral Controller, 24 analogic input
This intelligent peripheral card acquires 24 independent analogic input lines: 8 PT 100 or PT 1000 sensors, 8 J,K,S,T termocouples, 8 analog input ±2Vdc or 4÷20mA; 16 bits + sign A/D section; 0.1 °C resolution; 32K RAM for local data logging; buzzer; 16 TTL I/O lines; 5 or 8 conversion per second; facility of networking up to 127 IPC 52 cards using serial line, BUS interfacing or through RS 232, RS 422, RS 485 or current loop line. Only 5Vdc power supply.
BIBLIOGRAPHY

In this chapter there is a complete list of technical books, where the user can find all the necessary documentations on the components mounted on **GPC® 323**.

- **Manual TEXAS INSTRUMENTS:** *The TTL Data Book - SN54/74 Families*
- **Manual TEXAS INSTRUMENTS:** *RS-422 and RS-485 Interface Circuits*
- **Manual TEXAS INSTRUMENTS:** *Linear Circuits Data Book - Volumi 1 e 3*
- **Manual TEXAS INSTRUMENTS:** *Data Acquisition Circuits Data Book*
- **Manual NEC:** *Microprocessors and Peripherals - Volume 3*
- **Manual NEC:** *Memory Products*
- **Manual HEWLETT PACKARD:** *Optoelectronics Designer’s Catalog*
- **Manual MAXIM:** *New Releases Data Book - Volume 4*
- **Manual MAXIM:** *New Releases Data Book - Volume 5*
- **Manual XICOR:** *Data Book*
- **Manual PHILIPS:** *80C51 - Based 8-Bit Microcontrollers*
- **Manual PHILIPS:** *80C51 - 8 bit Flash microcontroller family*
- **Manual PHILIPS:** *I2C bus*
- **Manual DALLAS SEMICONDUCTOR:** *1992-1993 Product Data Book SUPPLEMENT*
- **Manual NATIONAL SEMICONDUCTOR:** *Linear Databook - Volume 1*
- **Manual INTEL:** *8 Bit Embedded Microcontrollers*
- **Manual TOSHIBA:** *Mos Memory Products*

For further information and upgrades please refer to specific internet web pages of the manufacturing companies.
APPENDIX A: ELECTRIC DIAGRAMS

In this appendix are available some electric diagrams of the most frequently used GPC® 323 interfaces. All these interfaces can be yourself produced and some of them are standard grifo® cards and, if required, they can be directly ordered.

FIGURE A1: PPI EXPANSION ELECTRIC DIAGRAM
Figure A2: SPA 03 electrical diagram
FIGURE A3: QTP 16P ELECTRIC DIAGRAM
Figure A4: QTP 24P Electric Diagram (1 of 2)
FIGURE A5: QTP 24P ELECTRIC DIAGRAM (2 OF 2)
FIGURE A6: ABACO® I/O BUS INPUT OUTPUT ELECTRIC DIAGRAM
FIGURE A7: BUS INTERFACE ELECTRIC DIAGRAM

Title: BUS interface

Date: 16/11/98

Page: 1 of 1
FIGURE A8: IAC 01 ELECTRIC DIAGRAM
APPENDIX B: ON BOARD DEVICES DESCRIPTION

µP 80C32

Philips Semiconductors

CMOS single-chip 8-bit microcontrollers

80C32/87C52

DESCRIPTION

The Philips 80C32/87C52 is a high-performance microcontroller fabricated with Philips high-density CMOS technology. The Philips CMOS technology combines the high speed and density characteristics of HMOS with the low power attributes of CMOS. Philips epitaxial substrate minimizes latch-up sensitivity.

The 87C52 contains an 8k × 8 EPROM and the 80C32 is ROMless. Both contain a 256 × 8 RAM, 32 I/O lines, three 16-bit counter/timers, a six-source, two-priority level nested interrupt structure, a serial I/O port for either multi-processor communications, I/O expansion or full duplex UART, and on-chip oscillator and clock circuits.

In addition, the 80C32/87C52 has two software selectable modes of power reduction—idle mode and power-down mode. The idle mode freezes the CPU while allowing the RAM, timers, serial port, and interrupt system to continue functioning. The power-down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative.

See 80C52/80C54/80C58 datasheet for ROM device specifications.

FEATURES

- 80C51 based architecture
- 8032 compatible
 - 8k × 8 EPROM (87C52)
 - ROMless (80C32)
 - 256 × 8 RAM
 - Three 16-bit counter/timers
 - Full duplex serial channel
 - Boolean processor
- Memory addressing capability
 - 64k ROM and 64k RAM
- Power control modes:
 - Idle mode
 - Power-down mode
- CMOS and TTL compatible
- Three speed ranges:
 - 3.5 to 16MHz
 - 3.5 to 24MHz
 - 3.5 to 33MHz
- Five package styles
- Extended temperature ranges
- OTP package available

PIN CONFIGURATIONS

| P1.0/T2 | P1.1/T2EX | P1.2 | P1.3 | P1.4 | P1.5 | P1.6 | P1.7 | RST | RxD/P3.0 | TxD/P3.1 | INT0/P3.2 | P2.0/A8 | P2.1/A9 | P2.2/A10 | P2.3/A11 | P2.4/A12 | P2.5/A13 | P2.6/A14 | P2.7/A15 |
|---------|-----------|------|------|------|------|------|------|-----|----------|----------|------------|--------|--------|----------|--------|--------|----------|--------|--------|----------|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| P0.0/AD0| P0.1/AD1 | P0.2/AD2| P0.3/AD3| P0.4/AD4| P0.5/AD5| P0.6/AD6| P0.7/AD7| P1.0/AD0| P1.1/AD1| P1.2/AD2| P1.3/AD3| P1.4/AD4| P1.5/AD5| P1.6/AD6| P1.7/AD7| P0.0/AD0| P0.1/AD1|

1996 Aug 16

2

853–1562 17195
Timer 2 as a baud rate generator is shown in Figure 4. This figure is valid only if RI2X = TCLK = 1 in T2CON. Note that if a rollover in TH2 does not set TF2, and will not generate an interrupt. Therefore, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. However, if TF2 is set, it will cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is used as a baud rate generator, T2EX can be used as an external interrupt. If desired.

It should be noted that when Timer 2 is running (TR2 = 1) in “timer” function in the baud rate generator mode, one should not try to read or write TH2 or TL2. Under these conditions the timer is being incremented every state time, and the results of a read or write may not be accurate. The RCAP registers may be read, but should not be written to, because a write might overlap a reload and cause a write or reload error. Turn the time off (clear TR2) before accessing the Timer 2 or RCAP registers, in this case.

Timer/Counter 2 Set-up

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the timer on. See Table 3 for set-up of Timer 2 as a timer. See Table 4 for set-up of Timer 2 as a counter.

Using Timer/Counter 2 to Generate Baud Rates

For this purpose, Timer 2 must be used in the baud rate generating mode. If Timer 2 is being clocked through pin T2 (P1.0) the baud rate is:

\[\text{Baud Rate} = \frac{\text{Timer 2 Overflow Rate}}{16} \]

And if it is being clocked internally, the baud rate is:

\[\text{Baud Rate} = \frac{\text{Oscillator Frequency}}{32 \times (\text{RCAP2L}, \text{RCAP2H})} \]

To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as:

\[\text{RCAP2H, RCAP2L} = \frac{\text{Oscillator Frequency}}{32 \times \text{Baud Rate}} \]
PIN DESCRIPTION

Table 1. 8XC52 Special Function Registers

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTON</th>
<th>DIRECT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION MSB</th>
<th>LSB</th>
<th>RESET VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC*</td>
<td>Accumulator</td>
<td>E0H</td>
<td>E0H</td>
<td>00H</td>
</tr>
<tr>
<td>B*</td>
<td>Register</td>
<td>F0H</td>
<td>F0H</td>
<td>00H</td>
</tr>
<tr>
<td>DPTR</td>
<td>Data pointer</td>
<td>F8H</td>
<td>F8H</td>
<td>00H</td>
</tr>
<tr>
<td>DPH</td>
<td>Data pointer high</td>
<td>83H</td>
<td>83H</td>
<td>00H</td>
</tr>
<tr>
<td>DPL</td>
<td>Data pointer low</td>
<td>82H</td>
<td>82H</td>
<td>00H</td>
</tr>
<tr>
<td>IE*</td>
<td>Interrupt enable</td>
<td>B0H</td>
<td>B0H</td>
<td>0000000B</td>
</tr>
<tr>
<td>IP*</td>
<td>Interrupt priority</td>
<td>B8H</td>
<td>B8H</td>
<td>00H</td>
</tr>
<tr>
<td>P0*</td>
<td>Port 0</td>
<td>AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0</td>
<td>83H</td>
<td>00H</td>
</tr>
<tr>
<td>P1*</td>
<td>Port 1</td>
<td>97 96 95 94 93 92 91 90</td>
<td>97 96 95 94 93 92 91 90</td>
<td></td>
</tr>
<tr>
<td>P2*</td>
<td>Port 2</td>
<td>A15 A14 A13 A12 A11 A10 A9 A8</td>
<td>A7 A6 A5 A4 A3 A2 A1 A0</td>
<td></td>
</tr>
<tr>
<td>P3*</td>
<td>Port 3</td>
<td>8D 8B 85 84 83 82 81 80</td>
<td>8D 8B 85 84 83 82 81 80</td>
<td></td>
</tr>
<tr>
<td>PCDON</td>
<td>Power control</td>
<td>8TH</td>
<td>8TH</td>
<td>0000000B</td>
</tr>
<tr>
<td>PSW</td>
<td>Program status word</td>
<td>DBH</td>
<td>DBH</td>
<td>00H</td>
</tr>
<tr>
<td>RCON</td>
<td>Capture high</td>
<td>OBH</td>
<td>OBH</td>
<td>00H</td>
</tr>
<tr>
<td>RCAP2H#</td>
<td>Capture low</td>
<td>CMH</td>
<td>CMH</td>
<td>00H</td>
</tr>
<tr>
<td>SBUF</td>
<td>Serial data buffer</td>
<td>9IH</td>
<td>9IH</td>
<td>0000000B</td>
</tr>
<tr>
<td>SCDON</td>
<td>Serial controller</td>
<td>9BH</td>
<td>9BH</td>
<td>00H</td>
</tr>
<tr>
<td>SP</td>
<td>Stack pointer</td>
<td>8FH</td>
<td>8FH</td>
<td>00H</td>
</tr>
<tr>
<td>TCON1*</td>
<td>Timer control</td>
<td>8BH</td>
<td>8BH</td>
<td>00H</td>
</tr>
<tr>
<td>TMOD</td>
<td>Timer mode</td>
<td>8BH</td>
<td>8BH</td>
<td>00H</td>
</tr>
</tbody>
</table>

* Bit addressable
* SRIFs are modified or added to the 80C51 SRIFs.

1. Bits G1, G0, P0, and I0 of the PCDON register are not implemented in the NMOS 8XC52.

Power Supply: This is the power supply voltage for normal, idle, and power-down operation.

Port 0: Port 0 is an open-drain, Intel 1/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it was using internal pull-ups when writing 1s. Port 0 also outputs the code bytes during program verification in the 80C52. External pull-ups are required during program verification.

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. During accesses to external data memory that use 16-bit addresses (MOVX @DPTR), port 1 serves as the DS/CS pin. In this application, it was using internal pull-ups when writing 1s. During accesses to external data memory that use 8-bit addresses (MOV @RI), port 1 serves as the contents of the R2 special function register.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. During accesses to external data memory that use 16-bit addresses (MOVX @DPTR), port 2 serves as the contents of the R3 special function register.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the internal pull-ups. During accesses to external data memory that use 16-bit addresses (MOVX @DPTR), port 3 serves as the contents of the R4 special function register.

Port 4: Port 4 is a bidirectional I/O port with internal pull-ups. Port 4 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 4 pins that are externally being pulled low will source current because of the internal pull-ups. During accesses to external data memory that use 16-bit addresses (MOVX @DPTR), port 4 serves as the contents of the R5 special function register.

Port 5: Port 5 is a bidirectional I/O port with internal pull-ups. Port 5 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 5 pins that are externally being pulled low will source current because of the internal pull-ups. During accesses to external data memory that use 16-bit addresses (MOVX @DPTR), port 5 serves as the contents of the R6 special function register.

Port 6: Port 6 is a bidirectional I/O port with internal pull-ups. Port 6 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 6 pins that are externally being pulled low will source current because of the internal pull-ups. During accesses to external data memory that use 16-bit addresses (MOVX @DPTR), port 6 serves as the contents of the R7 special function register.

Port 7: Port 7 is a bidirectional I/O port with internal pull-ups. Port 7 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 7 pins that are externally being pulled low will source current because of the internal pull-ups. During accesses to external data memory that use 16-bit addresses (MOVX @DPTR), port 7 serves as the contents of the R8 special function register.
DIFFERENCES FROM THE 80C51

Special Function Registers

The special function register space is the same as the 80C51 except that 80C32/87C52 contains the additional special function registers T2CON, RCAP2L, RCAP2H, TL2, and TH2. Since the standard 80C51 chip functions are identical in the 80C32, the SPH locations, bit locations, and operation are likewise identical. The only exceptions are in the interrupt mode and interrupt priority

Timer/Counters

In addition to timer/counters 0 and 1 of the 80C51, the 80C32/87C52 contains timer counter 2. Like timers 0 and 1, timer 2 can operate as either an event timer or as an event counter. This is selected by bit C/T2 in the special function register T2CON (see Figure 1). It has three operating modes: capture, auto-reload, and baud rate generator, which are selected by bits in the T2CON as shown in Table 2.

In the Capture Mode there are two options which can be selected by bit EXEN2 in T2CON. If EXEN2 = 0, then Timer 2 is a 16-bit timer or counter which upon overflow sets bit TF2, the Timer 2 overflow bit, which can be used to generate an interrupt. If EXEN2 = 1, then Timer 2 still does the above, but with the addedfeature that a 1-to-0 transition at external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. (RCAP2L and RCAP2H are new special function registers in the 80C32). In addition, the transition at T2EX causes Timer 2 to be reset, and EXF2 like TF2 can generate an interrupt. The Capture Mode is illustrated in Figure 2.

In the auto-reload mode, there are again two options, which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then when Timer 2 rolls over it not only sets TF2 but also causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2L and RCAP2H, which are preset by software. If EXEN2 = 1, then Timer 2 still does the above, but with the added feature that a 1-to-0 transition at external input T2EX will also trigger the 16-bit reload and set EXF2. The auto-reload mode is illustrated in Figure 3.

The baud rate generation mode is selected by RCLK = 1 and/or TCLK = 1. It will be described in conjunction with the serial port.

Serial Port

The serial port of the 80C32 is identical to that of the 80C51 except that counter/timer 2 can be used as the baud rate generator.

In the 80C32, Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (see Figure 1). Note that the baud rate for transmit and receive can be simultaneously different.

Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 4.

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

Now, the baud rates in Modes 1 and 3 are determined by Timer 2’s overflow rate as follows:

Modes 1, 3 Baud Rate

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

Figure 1. Timer/Counter 2 (T2CON) Control Register

Table 1

Symbol Name and Significance

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name and Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW2</td>
<td>Timer 2 overflow flag set when Timer 2 rollover pulse is detected.</td>
</tr>
<tr>
<td>EXEN2</td>
<td>Timer 2 external enable flag. When set, Timer 2 is enabled.</td>
</tr>
<tr>
<td>TCLK</td>
<td>Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflow to be used for the transmit clock.</td>
</tr>
<tr>
<td>RCLK</td>
<td>Receive clock flag. When set, causes the parallel port to use Timer 2 overflow pulses for its receive clock in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.</td>
</tr>
<tr>
<td>TF2</td>
<td>Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set if either RCLK or TCLK = 0.</td>
</tr>
<tr>
<td>C/T2</td>
<td>Start/stop control for Timer 2. A logic 1 starts the timer.</td>
</tr>
<tr>
<td>EXF2</td>
<td>Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXF2 = 0 causes Timer 2 to ignore events at T2EX.</td>
</tr>
<tr>
<td>CP/RL2</td>
<td>Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, CP/RL2 is ignored and the timer is clocked at its internal oscillator rate.</td>
</tr>
</tbody>
</table>

Figure 2. Timer 2 in Capture Mode

Figure 3. Timer 2 in Auto-Reload Mode

Figure 4. Timer 2 as a Baud Rate Generator
Timer 2 as a baud rate generator is shown in Figure 4. This figure is valid only if RCLK + TCLK = 1 in T2CON. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Therefore, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt, if desired.

It should be noted that when Timer 2 is running (TR2 = 1) in "timer" function in the baud rate generator mode, one should not try to read or write TH2 or TL2. Under these conditions, the timer is being incremented every state time, and the results of a read or write may not be accurate. The RCAP registers may be read, but should not be written to, because a write might overlap a reload and cause unwanted reload errors. Turn the timer off (clear TR2) before accessing the Timer 2 or RCAP registers, in this case.

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt, if desired.

It should be noted that when Timer 2 is running (TR2 = 1) in "timer" function in the baud rate generator mode, one should not try to read or write TH2 or TL2. Under these conditions, the timer is being incremented every state time, and the results of a read or write may not be accurate. The RCAP registers may be read, but should not be written to, because a write might overlap a reload and cause unwanted reload errors. Turn the timer off (clear TR2) before accessing the Timer 2 or RCAP registers, in this case.

Table 2. Timer 2 Operating Modes

<table>
<thead>
<tr>
<th>RCLK + TCLK</th>
<th>C/P</th>
<th>T2R</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16-bit Auto-reload</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>16-bit Capture</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>1</td>
<td>Baud rate generator</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>0</td>
<td>off</td>
</tr>
</tbody>
</table>

Table 3. Timer 2 as a Timer

<table>
<thead>
<tr>
<th>MODE</th>
<th>T2CON</th>
<th>INTERNAL CONTROL (Note 1)</th>
<th>EXTERNAL CONTROL (Note 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-bit Auto-reload</td>
<td>00H</td>
<td>0H</td>
<td>0H</td>
</tr>
<tr>
<td>16-bit Capture</td>
<td>01H</td>
<td>1H</td>
<td>0H</td>
</tr>
<tr>
<td>Baud rate generator receive and transmit same baud rate</td>
<td>34H</td>
<td>3H</td>
<td>3H</td>
</tr>
<tr>
<td>Receive only</td>
<td>24H</td>
<td>2H</td>
<td>2H</td>
</tr>
<tr>
<td>Transmit only</td>
<td>14H</td>
<td>1H</td>
<td>1H</td>
</tr>
</tbody>
</table>

Table 4. Timer 2 as a Counter

<table>
<thead>
<tr>
<th>MODE</th>
<th>TMOD</th>
<th>INTERNAL CONTROL (Note 1)</th>
<th>EXTERNAL CONTROL (Note 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-bit</td>
<td>02H</td>
<td>0AH</td>
<td>0AH</td>
</tr>
<tr>
<td>Auto-Reload</td>
<td>03H</td>
<td>0BH</td>
<td>0BH</td>
</tr>
</tbody>
</table>

NOTES:
1. Capture Reload occurs only on timer counter overflow.
2. Capture Reload occurs on timer counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generator mode.
OSCILOTR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator, as shown in the Logic Symbol, page 4.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, because the input to the internal clock circuitry is through a divide-by-two flip-flop. However, minimum and maximum high and low times specified in the data sheet must be observed.

RESET

A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods), while the oscillator is running. To insure a good power-up reset, the RST pin must be high long enough to allow the oscillator time to start up (normally a few milliseconds) plus two machine cycles.

IDLE MODE

In idle mode, the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the idle mode is

Power-Down Mode

In the power-down mode, the oscillator is stopped and the instruction to invoke power-down is the last instruction executed. Only the contents of the on-chip RAM are preserved. A hardware reset is the only way to terminate the power-down mode. The control bits for the reduced power mode are in the special function register PCON.

DESIGN CONSIDERATIONS

At power-on, the voltage on VCC and RST must come up at the same time for a proper start-up.

Table 5 shows the state of I/O ports during low current operating modes.

As a precaution to coming out of an unexpected power down, INT0 and INT1 should be disabled prior to entering power down.

<table>
<thead>
<tr>
<th>MODE</th>
<th>PROGRAM MEMORY</th>
<th>ALE</th>
<th>PSEN</th>
<th>PORT 0</th>
<th>PORT 1</th>
<th>PORT 2</th>
<th>PORT 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle</td>
<td>Internal</td>
<td>1</td>
<td>1</td>
<td>Data</td>
<td>Data</td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>External</td>
<td>1</td>
<td>1</td>
<td>Float</td>
<td>Data</td>
<td>Address</td>
<td>Data</td>
</tr>
<tr>
<td>Power-down</td>
<td>Internal</td>
<td>0</td>
<td>0</td>
<td>Data</td>
<td>Data</td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>Power-down</td>
<td>External</td>
<td>0</td>
<td>0</td>
<td>Float</td>
<td>Data</td>
<td>Data</td>
<td></td>
</tr>
</tbody>
</table>
FEATURES

• 80C32–Compatible
 – Pin–compatible
 – Standard 8051 instruction set
 – Four 8–bit I/O ports
 – Three 16–bit timer/counters
 – 256 bytes scratchpad RAM
 – Multiplexed address/data bus
 – Addresses 64KB ROM and 64KB RAM

• High–speed architecture
 – 4 clocks/machine cycle (8032=12)
 – Wasted cycles removed
 – Runs DC to 33 MHz clock rates
 – Single–cycle instruction in 121 ns
 – Uses less power for equivalent work
 – Dual data pointer
 – Optional variable length MOVX to access fast/ slow RAM /peripherals

• High integration controller includes:
 – Power–fail reset
 – Programmable Watchdog timer
 – Early–warning power–fail interrupt

• Two full–duplex hardware serial ports

• 13 total interrupt sources with six external

• Available in 40–pin DIP, 44–pin PLCC and TQFP

DESCRIPTION

The DS80C320 is a fast 80C31/80C32–compatible microcontroller. Wasted clock and memory cycles have been removed using a redesigned processor core. As a result, every 8051 instruction is executed between 1.5 and 3 times faster than the original for the same crystal speed. Typical applications will see a speed improvement of 2.5 times using the same code and same crystal. The DS80C320 offers a maximum crystal rate of 33 MHz, resulting in apparent execution speeds of 82.5 MHz (approximately 2.5X).
The DS80C320 is pin compatible with all three packages of the standard 80C32 and offers the same timers/ counters, serial port, and I/O ports. In short, the DS80C320 is extremely familiar to 8051 users but provides the speed of a 16-bit processor.

The DS80C320 provides several extras in addition to greater speed. These include a second full hardware serial port, seven additional interrupts, programmable watchdog timer, power-fail interrupt and reset. The DS80C320 also provides dual data pointers (DPTRs) to speed different memory moves. It can also adjust the speed of off-chip data memory access to between two and nine machine cycles for flexibility in selecting memory and peripherals.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>MAX CLOCK SPEED</th>
<th>TEMPERATURE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS80C320–QCG</td>
<td>44-pin TQFP</td>
<td>25 MHz</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>DS80C320–QCC</td>
<td>44-pin PLCC</td>
<td>25 MHz</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>DS80C320–QNG</td>
<td>44-pin TQFP</td>
<td>25 MHz</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>DS80C320–QNG</td>
<td>44-pin PLCC</td>
<td>25 MHz</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>DS80C320–MCL</td>
<td>44-pin TQFP</td>
<td>33 MHz</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>DS80C320–MCL</td>
<td>44-pin PLCC</td>
<td>33 MHz</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>DS80C320–QCL</td>
<td>44-pin TQFP</td>
<td>33 MHz</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>DS80C320–QCL</td>
<td>44-pin PLCC</td>
<td>33 MHz</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>DS80C320–MNL</td>
<td>44-pin TQFP</td>
<td>33 MHz</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>DS80C320–MNL</td>
<td>44-pin PLCC</td>
<td>33 MHz</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>

HIGH-SPEED OPERATION

The DS80C320 is built around a high speed 80C32 compatible core. Higher speed comes not just from increasing the clock frequency, but from a newer, more efficient design.

In this updated core, dummy memory cycles have been eliminated. In a conventional 80C32, machine cycles are generated by dividing the clock frequency by 12. In the DS80C320, the same machine cycle is performed in 4 clocks. Thus the fastest instruction, 1 machine cycle, is executed three times faster for the same crystal frequency. Note that these are identical instructions. A comparison of the timing differences is shown in Figure 2. The majority of instructions on the DS80C320 will see the full 3 to 1 speed improvement. Some instructions will get between 1.5 and 2.4 X improvement. Note that all instructions are faster than the original 80C51. Table 2 below shows a summary of the instruction set including the speed.

The numerical average of all opcodes is approximately a 2.5 to 1 speed improvement. Individual programs will be affected differently, depending on the actual instructions used. Speed sensitive applications would make the most use of instructions that are three times faster. However, the sheer number of 3 to 1 improved opcodes makes dramatic speed improvements likely for any code. When these architecture improvements are combined with 0.8 µm CMOS, the result is a single cycle instruction execution in 160 ns. The Dual Data Pointer feature also allows the user to eliminate wasted instructions when moving blocks of memory.

INSTRUCTION SET SUMMARY

All instructions in the DS80C320 perform the same functions as their 80C32 counterparts. Their affect on bits, flags, and other status functions is identical. However, the timing of each instruction is different. This applies both in absolute and relative number of cycles.

For absolute timing of real-time events, the timing of software loops will need to be calculated using the table below. However, counters/timers default to run at the older 12 clocks per increment. Therefore, while software runs at higher speed, timer-based events need no modification to operate as before. Timers can be set to run at 4 clocks per increment cycle to take advantage of higher speed operation.

The relative time of two instructions might be different in the new architecture than it was previously. For example, in the original architecture, the “MOV A, @DPTR” instruction and the “MOV direct, direct” instruction used two machine cycles or 12 oscillator cycles. Therefore, they required the same amount of time. In the DS80C320, the MOVX instruction can be done in two machine cycles or eight oscillator cycles but the “MOV direct, direct” uses three machine cycles or 12 oscillator cycles. While both are faster than their original counterparts, they now have different execution times from each other. This is because in most cases, the DS80C320 uses one cycle per each byte. The user concerned with precise program timing should examine the timing of each instruction for familiarity with the changes. Note that a machine cycle now requires just four clocks, and provides one ALE pulse per cycle. Many instructions require only one cycle, but some require five. In the original architecture, all were one or two cycles except for MUL and DIV.

INSTRUCTION SET SUMMARY Table 2

<table>
<thead>
<tr>
<th>Legend:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Accumulator</td>
</tr>
<tr>
<td>Rn</td>
<td>Register R7–R0</td>
</tr>
<tr>
<td>direct</td>
<td>Internal Register address</td>
</tr>
<tr>
<td>@Ri</td>
<td>Internal Register pointed-to by R0 or R1</td>
</tr>
<tr>
<td>rel</td>
<td>8’s complement offset byte</td>
</tr>
<tr>
<td>#data</td>
<td>8-bit constant</td>
</tr>
<tr>
<td>addr 16</td>
<td>16-bit constant</td>
</tr>
<tr>
<td>addr 16</td>
<td>16-bit destination address</td>
</tr>
<tr>
<td>addr 11</td>
<td>11-bit destination address</td>
</tr>
</tbody>
</table>
Instruction Byte

<table>
<thead>
<tr>
<th>INSTRUCTION</th>
<th>BYTE</th>
<th>OSCILLATOR CYCLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD A, Rn</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ADD A, direct</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>ADD A, @Ri</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ADD A, @data</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>ADD A, Rn</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ADD A, direct</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>ADD A, @Ri</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ADD A, @data</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>SUBB A, Rn</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>SUBB A, direct</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>SUBB A, @Ri</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>SUBB A, @data</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

Arithmetic Instructions:

- ADD A, Rn 1 4
- ADD A, direct 2 8
- ADD A, @Ri 1 4
- ADD A, @data 2 8
- ADD A, Rn 1 4
- ADD A, direct 2 8
- ADD A, @Ri 1 4
- ADD A, @data 2 8
- SUBB A, Rn 1 4
- SUBB A, direct 2 8
- SUBB A, @Ri 1 4
- SUBB A, @data 2 8

Logical Instructions:

- ANL A, Rn 1 4
- ANL A, direct 2 8
- ANL A, @Ri 1 4
- ANL A, @data 2 8
- ANL direct, A 2 8
- ORL A, Rn 1 4
- ORL A, direct 2 8
- ORL A, @Ri 1 4
- ORL A, @data 2 8
- ORL direct, A 2 8
- ORL direct, @data 3 12

Data Transfer Instructions:

- MOV A, Rn 1 4
- MOV A, direct 2 8
- MOV A, @Ri 1 4
- MOV A, @data 2 8
- MOV A, Rn 1 4
- MOV A, direct 2 8
- MOV A, @Ri 1 4
- MOV A, @data 2 8
- MOV direct, Rn 2 8
- MOV direct, direct 2 8
- MOV direct, @Ri 2 8
- MOV direct, @data 3 12
- MOV @Ri, A 1 4
- MOV @Ri, direct 2 8
- MOV @Ri, @data 2 8
- MOV @Ri, direct 2 8
- MOV @Ri, @data 2 8
- MOV DPTR, @data 16 3 12

*UserSelectable

The table above shows the speed for each class of instruction. Note that many of the instructions have multiple opcodes. There are 255 opcodes for 111 instructions. Of the 255 opcodes, 159 are three times faster than the original 80C32. While a system that emphasizes those instructions will see the most improvement, the large total number that receive a 3 to 1 improvement assure a dramatic speed increase for any system. The speed improvement summary is provided below.

The table above shows the speed for each class of instruction. Note that many of the instructions have multiple opcodes. There are 255 opcodes for 111 instructions. Of the 255 opcodes, 159 are three times faster than the original 80C32. While a system that emphasizes those instructions will see the most improvement, the large total number that receive a 3 to 1 improvement assure a dramatic speed increase for any system. The speed improvement summary is provided below.

SPEED ADVANTAGE SUMMARY

<table>
<thead>
<tr>
<th>#Opcodes</th>
<th>Speed Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>3.0 x</td>
</tr>
<tr>
<td>151</td>
<td>1.5 x</td>
</tr>
<tr>
<td>43</td>
<td>2.0 x</td>
</tr>
<tr>
<td>2</td>
<td>2.4 x</td>
</tr>
</tbody>
</table>

255 Average: 2.5

MEMORY ACCESS

The DS80C320 contains no on-chip ROM and 256 bytes of scratchpad RAM. Off-chip memory is accessed using the multiplexed address/data bus on P0 and the MSB address on P2. A typical memory connection is shown in Figure 3. Timing diagrams are provided in the Electrical Specifications. Program memory (ROM) is accessed at a fixed rate determined by the crystal frequency and the actual instructions. As mentioned above, an instruction cycle requires four clocks. Data memory (RAM) is accessed according to a variable speed MOVX instruction as described below.

The DS80C320 contains no on-chip ROM and 256 bytes of scratchpad RAM. Off-chip memory is accessed using the multiplexed address/data bus on P0 and the MSB address on P2. A typical memory connection is shown in Figure 3. Timing diagrams are provided in the Electrical Specifications. Program memory (ROM) is accessed at a fixed rate determined by the crystal frequency and the actual instructions. As mentioned above, an instruction cycle requires four clocks. Data memory (RAM) is accessed according to a variable speed MOVX instruction as described below.
DATA MEMORY CYCLE STRETCH VALUES

<table>
<thead>
<tr>
<th>CKCON.2-0</th>
<th>MEMORY</th>
<th>RD STROBE WIDTH</th>
<th>WR STROBE WIDTH</th>
<th>CYCLES @ 25 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>2</td>
<td>2</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>0 0 1</td>
<td>3 (default)</td>
<td>4</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>0 0 2</td>
<td>4</td>
<td>8</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>0 1 0</td>
<td>5</td>
<td>12</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>0 1 1</td>
<td>6</td>
<td>16</td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>1 0 0</td>
<td>7</td>
<td>20</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>1 0 1</td>
<td>8</td>
<td>24</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>1 1 0</td>
<td>9</td>
<td>28</td>
<td>1120</td>
<td></td>
</tr>
<tr>
<td>1 1 1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DUAL DATA POINTER

Data memory block moves can be accelerated using the DS80C320 Dual Data Pointer (DPTR). The standard 8051 strobe pointer DPTR is a 16-bit value that is used to address off-chip data RAM or peripherals. In the DS80C320, the standard data pointer is called DPTR0 and is located at SFR addresses 82h and 83h. These are the standard locations. No modification of standard code is needed to use DPTR. The new DPTR is located at SFR 84h and 85h and is called DPTR1. The DPTR Select bit (DPS) chooses the active pointer and is located in the LSB of the SFR location 86h. No other bits in register 86h have any effect and are set to 0. The user switches between data pointers by toggling the LSB of register 86h. No other in register 86h have any effect and are set to 0. The user switches between data pointers by toggling the LSB of register 86h. No other in register 86h have any effect and are set to 0. The user switches between data pointers by toggling the LSB of register 86h.

DPS 86h DPTR Select (LSB)

Sample code listed below illustrates the saving from using the dual DPTR. The example program was original code written for an 8051 and requires a total of 1869 machine cycles to execute at 25 MHz. The new code using the Dual DPTR requires only 1097 machine cycles taking 175.5 ns. The Dual DPTR saves 772 machine cycles or 123.5 µs for a 64 byte block move. Since each pass through the loop saves 12 machine cycles when compared to the single DPTR approach, larger blocks gain more efficiency using this feature.

64 BYTE BLOCK MOVE WITH DUAL DATA POINTER

; SH and SL are high and low byte source address.
; DH and DL are high and low byte of destination address.

; SH and SL are high and low byte source address.
; DH and DL are high and low byte of destination address.

MOV R5, #64 ; NUMBER OF BYTES TO MOVE
MOV R3, DPL ; LOAD NEW DESTINATION
MOV R4, DPH ; WRITE DATA TO DESTINATION
INC R3 ; NEXT DESTINATION ADDRESS
INC R4 ; NEXT SOURCE ADDRESS

MOVX @DPTR, A ; READ SOURCE DATA BYTE
MOV R1, DPL ; WRITE DATA TO DESTINATION
MOV R2, DPH ; NEXT DESTINATION ADDRESS

; THIS LOOP IS PERFORMED THE NUMBER OF TIMES LOADED INTO R5, IN THIS EXAMPLE 64

END

PERIPHERAL OVERVIEW

The second serial port has similar control registers (SCON1 at C0h, SBUF1 at C1h) to the original. One difference is that for timer based baud rates, the original serial port can use Timer 1 or Timer 2 to generate baud rates. This is selected via SFR bits. The new serial port can only use Timer 1.

SERIAL PORTS

The DS80C320 provides a serial port (USART) that is identical to the 80C32. Many applications require serial communication with multiple devices. Therefore the DS80C320 provides a second hardware serial port that is a full duplicate of the standard one. It optionally uses pins P1.2 (RXD1) and P1.3 (TXD1). This port has duplicate control functions included in new SFR locations.

TIMER RATE CONTROL

One important difference exists between the DS80C320 and 80C32 regarding timers. The original 80C32 uses a 15-clock per cycle time for timers and consequently for some serial baud rates (depending on the mode), the DS80C320 architecture normally runs using 4-clocks per cycle. However in the area of timing, the DS80C320 will default to a 12 clock per cycle
scheme on a reset. This allows existing code with real-time dependencies such as audio rates to operate properly. If an application needs higher speed timer or serial baud rates, the timers can be set to run at the 4 clock rate.

The Clock Control register (CKCON – 8Eh) determines these timer speeds. When the relevant CKCON bit is a logic 1, the DS80C320 uses 4 clocks per cycle to generate timer speeds. When the control bit is set to 0, the DS80C320 uses 12 clocks for timer speeds. The reset condition is a 0. CKCON.5 selects the speed of Timer2. CKCON.4 selects Timer 1 and CKCON.3 selects Timer 0. Note that unless a user desires a very fast timing, it is unnecessary to alter these bits. Note that the timer controls are independent.

POWER FAIL RESET
The DS80C320 incorporates a precision band-gap voltage reference to determine when VCC is out-of-tolerance. While powering up, internal circuits will hold the DS80C320 in a reset state until VCC rises above the VCCST reset threshold. Once VCCST is above this level, the oscillator will begin running. An internal reset circuit will then count 65536 clocks to allow time for power and the oscillator to stabilize. The microcontroller will then exit the reset condition. No external components are needed to generate a power on reset. During power down or during a severe power glitch, as VCC falls below VCCST the microcontroller will also generate its own reset. It will hold the reset condition as long as power remains below the threshold. This reset will occur automatically, needing no action from the user or from the software. Refer to the Electrical Specifications for the exact value of VCCST.

POWER FAIL INTERRUPT
The same reference generates a precision reset threshold can also generate an optional power-on reset (POR) on software fails to reset the Watchdog before the selected time interval has elapsed. The user selects one of four time-out values. After enabling the Watchdog, the user must reset the timer prior to expiration of the interval, or the CPU will reset. Both the Watchdog Enable and the Watchdog Reset bits are protected by a “Timed Access” circuit. This prevents accidentally clearing the Watchdog. Time-out values are precise since they are related to the crystal frequency as shown below in Table 4. For reference, the time periods at 25 MHz are also shown.

The DS80C320 Watchdog also provides a useful option for systems that may not require a reset. If enabled, then 512 clocks before giving a reset, the Watchdog will give an interrupt. This interrupt can also serve as a convenient time-base generator, or be used to wake-up the processor from Idle mode. The Watchdog function is controlled in the Clock Control (CKCON – 8Eh), Watchdog Control (WDCON – D8h), and Extended Interrupt Enable (EIE – 8Fh) SFRs. CKCON.7 and CKCON.6 are called WD1 and WD0 respectively and are used to select the Watchdog time-out period as shown in Table 4.

As shown above, the Watchdog Timer uses the crystal frequency as a time base. A user selects one of four counter values to determine the time-out. These clock counter lengths are 217 = 131,072 clocks; 216 = 65,536 clocks; 215 = 32,768 clocks; and 214 = 16,384 clocks. The times shown in Table 4 above are with a 25 MHz crystal frequency. Note that the counter has reached a conclusion, the optional interrupt is generated. Regardless of whether the user enables this interrupt, there are then 512 clocks left until a reset occurs. There are five control bits in special function registers that affect the Watchdog Timer and two status flags that report to the user.

WD1 (WDCON.3) is the interrupt flag that is set when there are 512 clocks remaining until a reset occurs. WTRF (WDCON.2) is the flag that is set when a Watchdog reset has occurred. This allows the application software to determine the source of a reset.

The Watchdog Timer uses the crystal frequency as a time base. A user selects one of four counter values to determine the time-out. These clock counter lengths are 2^17 = 131,072 clocks; 2^16 = 65,536 clocks; 2^15 = 32,768 clocks; and 2^14 = 16,384 clocks. The times shown in Table 4 above are with a 25 MHz crystal frequency. Note that the counter has reached a conclusion, the optional interrupt is generated. Regardless of whether the user enables this interrupt, there are then 512 clocks left until a reset occurs. There are five control bits in special function registers that affect the Watchdog Timer and two status flags that report to the user. WTRF (WDCON.2) is the flag that is set when a Watchdog reset has occurred. This allows the application software to determine the source of a reset.

The Watchdog Timer uses the crystal frequency as a time base. A user selects one of four counter values to determine the time-out. These clock counter lengths are 2^17 = 131,072 clocks; 2^16 = 65,536 clocks; 2^15 = 32,768 clocks; and 2^14 = 16,384 clocks. The times shown in Table 4 above are with a 25 MHz crystal frequency. Note that the counter has reached a conclusion, the optional interrupt is generated. Regardless of whether the user enables this interrupt, there are then 512 clocks left until a reset occurs. There are five control bits in special function registers that affect the Watchdog Timer and two status flags that report to the user. WTRF (WDCON.2) is the flag that is set when a Watchdog reset has occurred. This allows the application software to determine the source of a reset.

As shown above, the Watchdog Timer uses the crystal frequency as a time base. A user selects one of four counter values to determine the time-out. These clock counter lengths are 2^17 = 131,072 clocks; 2^16 = 65,536 clocks; 2^15 = 32,768 clocks; and 2^14 = 16,384 clocks. The times shown in Table 4 above are with a 25 MHz crystal frequency. Note that the counter has reached a conclusion, the optional interrupt is generated. Regardless of whether the user enables this interrupt, there are then 512 clocks left until a reset occurs. There are five control bits in special function registers that affect the Watchdog Timer and two status flags that report to the user. WTRF (WDCON.2) is the flag that is set when a Watchdog reset has occurred. This allows the application software to determine the source of a reset.

The Watchdog Timer uses the crystal frequency as a time base. A user selects one of four counter values to determine the time-out. These clock counter lengths are 2^17 = 131,072 clocks; 2^16 = 65,536 clocks; 2^15 = 32,768 clocks; and 2^14 = 16,384 clocks. The times shown in Table 4 above are with a 25 MHz crystal frequency. Note that the counter has reached a conclusion, the optional interrupt is generated. Regardless of whether the user enables this interrupt, there are then 512 clocks left until a reset occurs. There are five control bits in special function registers that affect the Watchdog Timer and two status flags that report to the user. WTRF (WDCON.2) is the flag that is set when a Watchdog reset has occurred. This allows the application software to determine the source of a reset.
Note that internally generated interrupts (timer, serial port, watchdog) are not useful since they require clocking activity.

IDLE MODE ENHANCEMENTS

A simple enhancement to idle mode makes it substantially more useful. The innovation involves not the idle mode itself, but the watchdog timer. As mentioned above, the Watchdog Timer provides an optional interrupt capability. This interrupt can provide a periodic interval timer to bring the DS80C320 out of idle mode. This can be useful even if the Watchdog is not normally used. By enabling the Watchdog Timer and its interrupt prior to going idle, a user can periodically come out of idle perform an operation, then return to idle until the next operation. This will lower the overall power consumption. When using the Watchdog interrupt to cancel the idle state, make sure to restart the Watchdog Timer or it will cause a reset.

STOP MODE ENHANCEMENTS

The DS80C320 provides two enhancements to the Stop mode. As documented above, the DS80C320 provides a band-gap reference to determine Power-fail Interrupt and Reset thresholds. The default state is that the band-gap reference is off when Stop mode is invoked. This allows the extremely low power state mentioned above. A user can optionally choose to have the band-gap enabled during Stop mode. This means that PFI and power-fail reset will be activated and are valid means for leaving Stop mode.

In Stop mode with the band-gap, I'll be approximately 50 µA compared with 1 µA with the band-gap off. If a user does not require a Power-fail Reset or Interrupt while in Stop mode, the band-gap can remain turned off. Note that only the most power-sensitive applications should turn the band-gap off, as this results in an uncontrolled power-down condition.

The control of the band-gap reference is located in the Extended Interrupt Flag register (EXIF – 91h). Setting BGS (EXIF.0) to a one will leave the band-gap reference enabled during Stop mode. The default or reset condition is with the bit at a logic 0. This results in the band-gap being turned off during Stop mode. Note that this bit has no control of the reference during full power or idle modes.

The second feature allows an additional power saving option. This is the ability to start instantly when exiting Stop mode. It is accomplished using an internal ring oscillator that can be used when exiting Stop mode in response to an interrupt. The benefit of the ring oscillator is as follows.

Using Stop mode turns off the crystal oscillator and all internal clocks to save power. This requires that the oscillator be restarted when exiting Stop mode. Actual start-up time is crystal dependent, but is normally at least 4 ms. A common recommendation is 10 ms. In an application that will wake-up, perform a short operation, then return to sleep, the crystal start-up can be longer than the real transaction. However, the ring oscillator will start instantly. The user can perform a simple operation and return to sleep before the crystal has even stabilized. If the ring is used to start and the processor remains running, hardware will automatically switch to the crystal once a power-on reset interval (65536 clocks) has elapsed. This value is used to guarantee stability even though power is not being cycled.

If the user returns to Stop mode prior to switching of crystal, then all clocks will be turned off again. The ring oscillator runs at approximately 4 MHz but will not be a precision value. No real-time precision operations (including serial communication) should be conducted during this ring period. Figure 7 shows how the operation would compare when using the ring, and when starting up normally. The default states is to come out of Stop mode without using the ring oscillator.

This function is controlled using the RGSL – Ring Select bit at EXIF.1 (EXIF – 91h). When EXIF.1 is set, the ring oscillator will be used to come out of Stop mode quickly. As mentioned above, the processor will automatically switch from the ring (if enabled) to the crystal after a delay of 65536 crystal clocks. For a 3.57 MHz crystal, this is approximately 18 ms. The processor sets a flag called RGMD – Ring Mode to tell software that the ring is being used. This bit at EXIF.2 will be a logic 1 when the ring is in use. No serial communication or precision timing should be attempted while this bit is set, since the operating frequency is not precise.

TABLE 6 – SPECIAL FUNCTION REGISTERS

<table>
<thead>
<tr>
<th>Register</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV 8Ch, #3Ah</td>
<td>Move data to specified location</td>
</tr>
<tr>
<td>MOV 0Ch, #55h</td>
<td>Move data to specified location</td>
</tr>
</tbody>
</table>

By writing an Ah followed by a 55h to the Timed Access register (location C7h), the hardware opens a two cycle window that allows software to modify one of the protected bits. If the instruction that seeks to modify the protected bit is not immediately preceded by these instructions, the write will not take effect. The protected bits are:

- BGS (EXIF.0) Band-gap Select
- WDCON.6 POR Power-on Reset flag
- WDCON.1 EWT Enable Watchdog
- WDCON.0 RWT Reset Watchdog
- WDCON.3 WDF Watchdog Interrupt flag

TIMED ACCESS PROTECTION

Selected SFR bits are critical to operation, making it desirable to protect against an accidental write operation. The Timed Access procedure prevents an errant write to a bit that would cause difficulty. The Timed Access procedure requires that the write of a protected bit be preceded by the following instructions:

```
MOV 0C7h, #55h
MOV 0C7h, #3Ah
```

Diagram assumes that the operation following Stop requires less than 18 ms complete.
SPECIAL FUNCTION REGISTER LOCATIONS

Table 6

<table>
<thead>
<tr>
<th>REGISTER</th>
<th>BIT 7</th>
<th>BIT 6</th>
<th>BIT 5</th>
<th>BIT 4</th>
<th>BIT 3</th>
<th>BIT 2</th>
<th>BIT 1</th>
<th>BIT 0</th>
<th>ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81h</td>
</tr>
<tr>
<td>DPL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82h</td>
</tr>
<tr>
<td>DPH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83h</td>
</tr>
<tr>
<td>DP0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>84h</td>
</tr>
<tr>
<td>DS80C320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85h</td>
</tr>
<tr>
<td>PCON</td>
<td>SMOD0</td>
<td>SMOD0</td>
<td>–</td>
<td>–</td>
<td>RFF</td>
<td>GF1</td>
<td>GF0</td>
<td>STOP</td>
<td>IDLE</td>
</tr>
<tr>
<td>TCON</td>
<td>TF1</td>
<td>TF0</td>
<td>TR1</td>
<td>TR0</td>
<td>IE1</td>
<td>IE0</td>
<td>IT1</td>
<td>IT0</td>
<td>88h</td>
</tr>
<tr>
<td>TMOD</td>
<td>C/T</td>
<td>M1</td>
<td>M0</td>
<td>GATE</td>
<td>C/T</td>
<td>M1</td>
<td>M0</td>
<td>89h</td>
<td></td>
</tr>
<tr>
<td>TL0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8Ah</td>
</tr>
<tr>
<td>TL1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8Bh</td>
</tr>
<tr>
<td>TH0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8Ch</td>
</tr>
<tr>
<td>TH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8Dh</td>
</tr>
<tr>
<td>OKCON</td>
<td>WD1</td>
<td>WD0</td>
<td>TM1</td>
<td>T0M</td>
<td>MD2</td>
<td>MD1</td>
<td>MD0</td>
<td>90h</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>P1.7</td>
<td>P1.6</td>
<td>P1.5</td>
<td>P1.4</td>
<td>P1.3</td>
<td>P1.2</td>
<td>P1.1</td>
<td>P1.0</td>
<td>91h</td>
</tr>
<tr>
<td>EXIF</td>
<td>IE5</td>
<td>IE4</td>
<td>IE3</td>
<td>IE2</td>
<td>–</td>
<td>RGM0</td>
<td>RGL0</td>
<td>BGS</td>
<td>92h</td>
</tr>
<tr>
<td>SCON0</td>
<td>SMI/FE0</td>
<td>SMF</td>
<td>SMI/0</td>
<td>SML/0</td>
<td>REN</td>
<td>TM0</td>
<td>TM1</td>
<td>T2M</td>
<td>93h</td>
</tr>
<tr>
<td>SBUF0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>94h</td>
</tr>
<tr>
<td>P2</td>
<td>P2.0</td>
<td>P2.6</td>
<td>P2.5</td>
<td>P2.4</td>
<td>P2.3</td>
<td>P2.2</td>
<td>P2.1</td>
<td>P2.0</td>
<td>95h</td>
</tr>
<tr>
<td>T1</td>
<td>E1</td>
<td>E0</td>
<td>ET1</td>
<td>ET0</td>
<td>EX1</td>
<td>EX0</td>
<td></td>
<td></td>
<td>96h</td>
</tr>
<tr>
<td>SADRO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97h</td>
</tr>
<tr>
<td>SADRO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98h</td>
</tr>
<tr>
<td>SADRO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99h</td>
</tr>
<tr>
<td>P3</td>
<td>P3.7</td>
<td>P3.6</td>
<td>P3.5</td>
<td>P3.4</td>
<td>P3.3</td>
<td>P3.2</td>
<td>P3.1</td>
<td>P3.0</td>
<td>A0h</td>
</tr>
<tr>
<td>P</td>
<td>–</td>
<td>F1</td>
<td>F0</td>
<td>P2</td>
<td>F1</td>
<td>F0</td>
<td></td>
<td></td>
<td>A1h</td>
</tr>
<tr>
<td>P6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A2h</td>
</tr>
<tr>
<td>SADEN0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A3h</td>
</tr>
<tr>
<td>SADEN1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A4h</td>
</tr>
<tr>
<td>SCON1</td>
<td>SMI/FE0</td>
<td>SMF</td>
<td>SMI/0</td>
<td>SML/0</td>
<td>REN</td>
<td>TM0</td>
<td>TM1</td>
<td>T2M</td>
<td>A5h</td>
</tr>
<tr>
<td>SBUF1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A6h</td>
</tr>
<tr>
<td>STATUS</td>
<td>PIP</td>
<td>KIP</td>
<td>UP</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>A7h</td>
</tr>
<tr>
<td>TA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A8h</td>
</tr>
<tr>
<td>T1CON</td>
<td>TF2</td>
<td>TF1</td>
<td>RC1</td>
<td>RC0</td>
<td>TCLK</td>
<td>STO</td>
<td>T2R</td>
<td>T2M</td>
<td>A9h</td>
</tr>
<tr>
<td>TCNTD</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>AAh</td>
</tr>
<tr>
<td>RCAP2L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABh</td>
</tr>
<tr>
<td>RCAP2H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACb</td>
</tr>
<tr>
<td>TL2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADh</td>
</tr>
<tr>
<td>TH2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AEh</td>
</tr>
<tr>
<td>PSW</td>
<td>CY</td>
<td>AC</td>
<td>F0</td>
<td>RB1</td>
<td>RB0</td>
<td>CV</td>
<td>FL</td>
<td>JP</td>
<td>AFh</td>
</tr>
<tr>
<td>WDOCON</td>
<td>SMOD0</td>
<td>SMOD1</td>
<td>FOR</td>
<td>EPFI</td>
<td>PFI</td>
<td>WDF</td>
<td>WRF</td>
<td>EWT</td>
<td>BFh</td>
</tr>
<tr>
<td>ACC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C0h</td>
</tr>
<tr>
<td>B</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>C1h</td>
</tr>
<tr>
<td>S1P</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>C2h</td>
</tr>
</tbody>
</table>
Memory Organization

Program Memory

The 80C51 has separate address spaces for program and data memory. The program memory can be up to 64k bytes long. The lower 4k can reside on-chip. Figure 1 shows a map of the 80C51 program memory.

The 80C51 can address up to 64k bytes of data memory to the chip. The MOVX instruction is used to access the external data memory. The 80C51 has 128 bytes of on-chip RAM, plus a number of Special Function Registers (SFRs). The lower 128 bytes of RAM can be accessed either by direct addressing (MOV data addr) or by indirect addressing (MOV @Ri). Figure 2 shows the Data Memory organization.

Direct and Indirect Address Area

The 128 bytes of RAM which can be accessed by both direct and indirect addressing can be divided into three segments as listed below and shown in Figure 3:

1. Register Banks 0-3: Locations 0 through 1FH (32 bytes). The device after reset defaults to register bank 0. To use the other register banks, the user must select them in software. Each register bank contains eight 1-byte registers 0 through 7. Reset initializes the stack pointer to location 00H, which is the first register (R0) of the second register bank. Thus, in order to use more than one register bank, the SP should be initialized to a different location of the RAM where it is not used for data storage, i.e., the higher part of the RAM.

2. Bit Addressable Area: 16 bytes have been assigned for this segment, 20H-2FH. Each one of the 128 bits of this segment can be directly addressed (0-7FH). The bits can be referenced in two ways, both of which are acceptable by most assemblers. One way is to refer to their address (i.e., 0-7FH). The other way is with reference to bytes 20H to 2FH. Thus, bits 0-7 can also be referred to as bits 20.0-20.7, and bits 8-15 can be referred to as bits 21.0-21.7, and so on. Each of the 16 bytes in this segment can also be addressed as a byte.

3. Scratch Pad Area: 30H through 7FH are available to the user as data RAM. However, if the stack pointer has been initialized to this area, enough bytes should be left aside to prevent SP data destruction.

Figure 2 shows the different segments of the on-chip RAM.
Table 1. 80C51 Special Function Registers

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
<th>DIRECT ADDRESS</th>
<th>BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION</th>
<th>LBA</th>
<th>RESET VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC*</td>
<td>Accumulator</td>
<td>E0H</td>
<td>E7 E6 E5 E4 E3 E2 E1 E0</td>
<td></td>
<td>00H</td>
</tr>
<tr>
<td>B*</td>
<td>B register</td>
<td>F0H</td>
<td>F7 F6 F5 F4 F3 F2 F1 F0</td>
<td></td>
<td>00H</td>
</tr>
<tr>
<td>DPTR</td>
<td>Data pointer (2 bytes)</td>
<td>83H</td>
<td></td>
<td></td>
<td>03H</td>
</tr>
<tr>
<td>DPH</td>
<td>Data pointer high</td>
<td>82H</td>
<td>AAF AE AD AC AB A9 A8 A7 A6 A5 A4 A3 A2 A1 A0</td>
<td></td>
<td>00H</td>
</tr>
<tr>
<td>DPL</td>
<td>Data pointer low</td>
<td>80H</td>
<td></td>
<td></td>
<td>00H</td>
</tr>
<tr>
<td>IE*</td>
<td>Interrupt enable</td>
<td>A0H</td>
<td>EA E7 E6 E5 E4 E3 E2 E1</td>
<td></td>
<td>x‘000000B</td>
</tr>
<tr>
<td>IP*</td>
<td>Interrupt priority</td>
<td>8BH</td>
<td>PS PT1 PT0</td>
<td></td>
<td>x‘000000B</td>
</tr>
<tr>
<td>P0*</td>
<td>Port 0</td>
<td>80H</td>
<td>AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0</td>
<td></td>
<td>FFH</td>
</tr>
<tr>
<td>P1*</td>
<td>Port 1</td>
<td>81H</td>
<td></td>
<td></td>
<td>FFH</td>
</tr>
<tr>
<td>P2*</td>
<td>Port 2</td>
<td>A0H</td>
<td>A7 A6 A5 A4 A3 A2 A1 A0</td>
<td></td>
<td>FFH</td>
</tr>
<tr>
<td>P3*</td>
<td>Port 3</td>
<td>81H</td>
<td>TD WR T1 T0</td>
<td></td>
<td>FFH</td>
</tr>
<tr>
<td>PCON†</td>
<td>Power control</td>
<td>87H</td>
<td>SNAC</td>
<td></td>
<td>000000B</td>
</tr>
<tr>
<td>PSW*</td>
<td>Program status word</td>
<td>D0H</td>
<td>CY AC R0 R1 R01 R10 CV – –</td>
<td></td>
<td>00H</td>
</tr>
<tr>
<td>SBUF</td>
<td>Serial data buffer</td>
<td>98H</td>
<td></td>
<td></td>
<td>0000000B</td>
</tr>
<tr>
<td>SCON*</td>
<td>Serial controller</td>
<td>98H</td>
<td>SF BS BS1 BS0 BSF T1B T0B</td>
<td></td>
<td>00H</td>
</tr>
<tr>
<td>SP</td>
<td>Stack pointer</td>
<td>81H</td>
<td>BF BE BD BC BB BA BA B9 B8 B7 B6 B5 B4 B3 B2 B1 B0</td>
<td></td>
<td>07H</td>
</tr>
<tr>
<td>TCON</td>
<td>Timer control</td>
<td>88H</td>
<td>T1H T1L T0H T0L</td>
<td></td>
<td>00H</td>
</tr>
<tr>
<td>TMOD</td>
<td>Timer mode</td>
<td>88H</td>
<td>GATE C/T</td>
<td></td>
<td>00H</td>
</tr>
</tbody>
</table>

NOTES:
- * Bit addressable
- † Bits G1, G0, PD, and IDL of the PCON register are not implemented on the NMOS 8051/8031.

![Figure 4. SFR Memory Map](image-url)
Those SFRs that have their bits assigned for various functions are listed in this section. A brief description of each bit is provided for quick reference. For more detailed information refer to the Architecture Chapter of this book.

PSW: PROGRAM STATUS WORD. BIT ADDRESSABLE.

<table>
<thead>
<tr>
<th>CY</th>
<th>AC</th>
<th>F0</th>
<th>RS1</th>
<th>RS0</th>
<th>OV</th>
<th>–</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY</td>
<td>PSW.7 Carry Flag.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>PSW.6 Auxiliary Carry Flag.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0</td>
<td>PSW.5 Flag 0 available to the user for general purpose.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS1</td>
<td>PSW.4 Register Bank selector bit 1 (SEE NOTE 1).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS0</td>
<td>PSW.3 Register Bank selector bit 0 (SEE NOTE 1).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OV</td>
<td>PSW.2 Overflow Flag.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>PSW.1 Usable as a general purpose flag.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| P | PSW.0 Parity flag. Set/cleared by hardware each instruction cycle to indicate an odd/even number of '1' bus in the accumulator.

NOTE:
1. The value represented by RS0 and RS1 selects the corresponding register bank.

PCON: POWER CONTROL REGISTER. NOT BIT ADDRESSABLE.

<table>
<thead>
<tr>
<th>SMOD</th>
<th>GF1</th>
<th>GF0</th>
<th>PD</th>
<th>IDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMOD</td>
<td>Double baud rate bit. If Timer 1 is used to generate baud rate and SMOD = 1, the baud rate is doubled when the Serial Port is used in modes 1, 2, or 3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>Not implemented reserved for future use.*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>Not implemented reserved for future use.*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>Not implemented reserved for future use.*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GF1</td>
<td>General purpose flag bit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GF0</td>
<td>General purpose flag bit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>Power Down Bit. Setting this bit activates Power Down operation in the 80C51. (Available only in CMOS.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDL</td>
<td>Idle mode bit. Setting this bit activates Idle Mode operation in the 80C51. (Available only in CMOS.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If 1s are written to PD and IDL at the same time, PD takes precedence.

* User software should not write 1s to reserved bits. These bits may be used in future 8051 products to invoke new features.

INTERRUPTS:
To use any of the interrupts in the 80C51 Family, the following three steps must be taken.
1. Set the EA (enable all) bit in the IEn register to 1.
2. Set the corresponding individual interrupt enable bit in the IEn register to 1.
3. Begin the interrupt service routine at the corresponding Vector Address of that interrupt. See Table below.

<table>
<thead>
<tr>
<th>INTERRUPT SOURCE</th>
<th>VECTOR ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE0</td>
<td>0000H</td>
</tr>
<tr>
<td>TF0</td>
<td>0001H</td>
</tr>
<tr>
<td>IE1</td>
<td>0010H</td>
</tr>
<tr>
<td>TF1</td>
<td>0011H</td>
</tr>
<tr>
<td>R & T1</td>
<td>0012H</td>
</tr>
</tbody>
</table>

In addition, for external interrupts, pins INT0 and INT1 (P3.2 and P3.3) must be set to 1, and depending on whether the interrupt is to be level or transition activated, bits IT0 or IT1 in the TCON register may need to be set to 1.

IE: INTERRUPT ENABLE REGISTER. BIT ADDRESSABLE.
If the bit is 0, the corresponding interrupt is disabled. If the bit is 1, the corresponding interrupt is enabled.

<table>
<thead>
<tr>
<th>EA</th>
<th>–</th>
<th>–</th>
<th>ES</th>
<th>ET1</th>
<th>EX1</th>
<th>ET0</th>
<th>EX0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA</td>
<td>IE.7</td>
<td>Enables all interrupts. If EA = 0, no interrupt will be acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>IE.6</td>
<td>Not implemented, reserved for future use.*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>IE.5</td>
<td>Not implemented, reserved for future use.*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES</td>
<td>IE.4</td>
<td>Enable or disable the serial port interrupt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET1</td>
<td>IE.3</td>
<td>Enable or disable the Timer 1 overflow interrupt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX1</td>
<td>IE.2</td>
<td>Enable or disable External Interrupt 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET0</td>
<td>IE.1</td>
<td>Enable or disable the Timer 0 overflow interrupt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX0</td>
<td>IE.0</td>
<td>Enable or disable External Interrupt 0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* User software should not write 1s to reserved bits. These bits may be used in future 8051 products to invoke new features.
Assigning Higher Priority to One or More Interrupts:

In order to assign a higher priority to an interrupt, the corresponding bit must be set in the IP register. Consider the following example:

<table>
<thead>
<tr>
<th>IP bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP.0</td>
<td>External Interrupt 0 edge flag. Set by hardware when an External Interrupt 0 edge is detected. Cleared by processor vectors to the interrupt service routine.</td>
</tr>
<tr>
<td>IP.1</td>
<td>External Interrupt 0 edge flag. Set by hardware when an External Interrupt 0 edge is detected. Cleared by processor vectors to the interrupt service routine.</td>
</tr>
<tr>
<td>IP.2</td>
<td>External Interrupt 1 edge flag. Set by hardware when an External Interrupt 1 edge is detected. Cleared by processor vectors to the interrupt service routine.</td>
</tr>
<tr>
<td>IP.3</td>
<td>External Interrupt 1 edge flag. Set by hardware when an External Interrupt 1 edge is detected. Cleared by processor vectors to the interrupt service routine.</td>
</tr>
<tr>
<td>IP.4</td>
<td>External Interrupt 1 edge flag. Set by hardware when an External Interrupt 1 edge is detected. Cleared by processor vectors to the interrupt service routine.</td>
</tr>
<tr>
<td>IP.5</td>
<td>External Interrupt 1 edge flag. Set by hardware when an External Interrupt 1 edge is detected. Cleared by processor vectors to the interrupt service routine.</td>
</tr>
<tr>
<td>IP.6</td>
<td>External Interrupt 1 edge flag. Set by hardware when an External Interrupt 1 edge is detected. Cleared by processor vectors to the interrupt service routine.</td>
</tr>
<tr>
<td>IP.7</td>
<td>Not implemented, reserved for future use.</td>
</tr>
</tbody>
</table>

- Bit 7 of the IP register controls the priority level for the corresponding interrupt. If bit 7 is set, the corresponding interrupt has a higher priority.
- Bit 0 to bit 6 control the priority levels for the external interrupts. If a bit is set, the corresponding interrupt has a lower priority.

TCON: Timer/Counter Control Register

<table>
<thead>
<tr>
<th>TCON bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF1</td>
<td>Timer 1 overflow flag. Set by hardware when the Timer/Counter 1 overflows. Cleared by processor vectors to the interrupt service routine.</td>
</tr>
<tr>
<td>TF0</td>
<td>Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 overflows. Cleared by processor vectors to the interrupt service routine.</td>
</tr>
<tr>
<td>IE1</td>
<td>External Interrupt 1 edge flag. Set by hardware when an External Interrupt 1 edge is detected. Cleared by processor vectors to the interrupt service routine.</td>
</tr>
<tr>
<td>IE0</td>
<td>External Interrupt 0 edge flag. Set by hardware when an External Interrupt 0 edge is detected. Cleared by processor vectors to the interrupt service routine.</td>
</tr>
<tr>
<td>IT1</td>
<td>Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low level triggered External Interrupt.</td>
</tr>
<tr>
<td>IT0</td>
<td>Interrupt 0 type control bit. Set/cleared by software to specify falling edge/low level triggered External Interrupt.</td>
</tr>
</tbody>
</table>

TMOD: Timer/Counter Mode Control Register

<table>
<thead>
<tr>
<th>TMOD bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GATE</td>
<td>When TRx (in TCON) is set and GATE = 1, the Timer/Counter will run only while INTx pin is high (hardware control). When GATE = 0, the Timer/Counter will run only while TRx = 1 (software control).</td>
</tr>
<tr>
<td>C/T</td>
<td>Timer or Counter selector. Cleared for Timer operation (input from internal system clock). Set for Counter operation (input from Tx input pin).</td>
</tr>
</tbody>
</table>

Notes:

- Bits M1 and M0 determine the operating mode of the Timer/Counter. The possible modes are:
 - 00: 13-bit Timer (8048 compatible)
 - 01: 16-bit Timer/Counter
 - 10: 8-bit Auto-Reload Timer
 - 11: Timer/Counter 0 stopped

- The INTx pin is used to trigger the interrupt when the appropriate bit in the IP register is set.
- The TRx bit is used to enable or disable the Timer/Counter.
80C51 Family

80C51 family programmer's guide and instruction set

TIMER SET-UP

Tables 2 through 6 give some values for TMOD which can be used to set up Timer 0 in different modes.

It is assumed that only one timer is being used at a time. If it is desired to run Timers 0 and 1 simultaneously, in any mode, the value in TMOD for Timer 0 must be ORed with the value shown for Timer 1 (Tables 5 and 6).

For example, if it is desired to run Timer 0 in mode 1 GATE (external control), and Timer 1 in mode 2 COUNTER, then the value that must be loaded into TMOD is 69H (09H from Table 2 ORed with 60H from Table 5).

Moreover, it is assumed that the user, at this point, is not ready to turn the timers on and will do that at a different point in the program by setting bit TRx (in TCON) to 1.

TIMER/COUNTER 0

Table 2. As a Timer:

<table>
<thead>
<tr>
<th>MODE</th>
<th>TMOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>08H</td>
</tr>
<tr>
<td>1</td>
<td>09H</td>
</tr>
<tr>
<td>2</td>
<td>0AH</td>
</tr>
<tr>
<td>3</td>
<td>0BH</td>
</tr>
</tbody>
</table>

Table 3. As a Counter:

<table>
<thead>
<tr>
<th>MODE</th>
<th>TMOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>08H</td>
</tr>
<tr>
<td>1</td>
<td>09H</td>
</tr>
<tr>
<td>2</td>
<td>0AH</td>
</tr>
</tbody>
</table>

NOTES:

1. The timer is turned ON/OFF by setting/clearing bit TR0 in the software.
2. The Timer is turned ON/OFF by the 1-to-0 transition on INT0 (P3.2) when TR0 = 1 (hardware control).

TIMER/COUNTER 1

Table 4. As a Timer:

<table>
<thead>
<tr>
<th>MODE</th>
<th>TMOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80H</td>
</tr>
<tr>
<td>1</td>
<td>90H</td>
</tr>
<tr>
<td>2</td>
<td>A0H</td>
</tr>
<tr>
<td>3</td>
<td>B0H</td>
</tr>
</tbody>
</table>

Table 5. As a Counter:

<table>
<thead>
<tr>
<th>MODE</th>
<th>TMOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C0H</td>
</tr>
<tr>
<td>1</td>
<td>D0H</td>
</tr>
<tr>
<td>2</td>
<td>E0H</td>
</tr>
</tbody>
</table>

NOTES:

1. The timer is turned ON/OFF by setting/clearing bit TR1 in the software.
2. The Timer is turned ON/OFF by the 1-to-0 transition on INT1 (P3.2) when TR1 = 1 (hardware control).
SCON: SERIAL PORT CONTROL REGISTER. BIT ADDRESSABLE.

<table>
<thead>
<tr>
<th>SM0</th>
<th>SM1</th>
<th>SM2</th>
<th>REN</th>
<th>TB8</th>
<th>RB8</th>
<th>TI</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SM0 SCON.7 Serial Port mode specifier. (NOTE 1)
SM1 SCON.6 Serial Port mode specifier. (NOTE 1)
SM2 SCON.5 Enables the multiprocessor communication feature in modes 2 & 3. If SM2 is set to 1 then
SM0 SM1 Mode Description Baud Rate
0 0 0 Shift Register F OSC /12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART F OSC or F OSC /32
1 1 3 9-bit UART Variable

NOTE 1:

REN SCON.4 Set/Cleared by software to Enable/Disable reception.
TB8 SCON.3 The 9th bit that will be transmitted in modes 2 & 3. Set/Cleared by software.
RB8 SCON.2 In modes 2 & 3, is the 9th data bit that was received. In mode 1, if SM2 = 0, RB8 is the stop bit that was
received. In mode 0, RB8 is not used.
TI SCON.1 Transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or at the beginning of the
stop bit in the other modes. Must be cleared by software.
RI SCON.0 Receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or halfway through the
stop bit time in the other modes (except see SM2). Must be cleared by software.

NOTE 1:

SM0 SM1 Mode Description Baud Rate
0 0 0 Shift Register F OSC /12
0 0 1 8-bit UART Variable
0 1 1 8-bit UART Variable
1 0 2 9-bit UART F OSC or F OSC /32
1 1 3 9-bit UART Variable

SERIAL PORT SET-UP:

Table 6.

<table>
<thead>
<tr>
<th>MODE</th>
<th>SCON</th>
<th>SM2 VARIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19H</td>
<td>Single Processor</td>
</tr>
<tr>
<td>1</td>
<td>59H</td>
<td>Environment</td>
</tr>
<tr>
<td>2</td>
<td>99H</td>
<td>(SM2 = 0)</td>
</tr>
<tr>
<td>3</td>
<td>D9H</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODE</th>
<th>SCON</th>
<th>SM2 VARIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>Multi-processor</td>
</tr>
<tr>
<td>1</td>
<td>79H</td>
<td>Environment</td>
</tr>
<tr>
<td>2</td>
<td>89H</td>
<td>(SM2 = 1)</td>
</tr>
<tr>
<td>3</td>
<td>F9H</td>
<td></td>
</tr>
</tbody>
</table>

GENERATING BAUD RATES

Serial Port in Mode 0:
Mode 0 has a fixed baud rate which is 1/12 of the oscillator frequency. To run the serial port in this mode none of the
Timer/Counters need to be set up. Only the SCON register needs to be defined.

Baud Rate Osc. Freq
12 1/12

Serial Port in Mode 1:
Mode 1 has a variable baud rate. The baud rate is generated by Timer 1.

USING TIMER/COUNTER 1 TO GENERATE BAUD RATES:
For this purpose, Timer 1 is used in mode 2 (Auto-Reload). Refer to Timer Setup section of this chapter.

Baud Rate K Osc. Freq
32 12 [256 x TH1]

If SMOD = 0, then K = 1.
If SMOD = 1, then K = 2 (SMOD is in the PCON register).
Most of the time the user knows the baud rate and needs to know the reload value for TH1.

TH1 256 K Osc. Freq
384 baud rate

TH1 must be an integer value. Rounding off TH1 to the nearest integer may not produce the desired baud rate. In this case, the
user may have to choose another crystal frequency.

Since the PCON register is not bit addressable, one way to set the bit is logical ORing the PCON register (i.e., ORL
PCON,#80H). The address of PCON is 87H.

SERIAL PORT IN MODE 2:
The baud rate is fixed in this mode and is 1/32 or 1/64 of the oscillator frequency, depending on the value of the SMOD bit in the
PCON register.

In this mode none of the Timers are used and the clock comes from the internal phase 2 clock.
SMOD = 1, Baud Rate = 1/32 Osc. Freq
SMOD = 0, Baud Rate = 1/64 Osc. Freq

To set the SMOD bit: ORL PCON,#80H. The address of PCON is 87H.

SERIAL PORT IN MODE 3:
The baud rate in mode 3 is variable and sets up exactly the same as in mode 1.
Table 7. 80C51 Instruction Set Summary (Continued)

<table>
<thead>
<tr>
<th>MNEMONIC</th>
<th>DESCRIPTION</th>
<th>BYTE</th>
<th>OSCILLATOR PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Add register to Accumulator</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>ADD</td>
<td>Add direct byte to Accumulator</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>ADD</td>
<td>Add indirect RAM to Accumulator</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>ADD</td>
<td>Add immediate data to Accumulator</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>ADCA</td>
<td>Add to Accumulator with carry</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>ADCA</td>
<td>Add indirect RAM to Accumulator with carry</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>ADCA</td>
<td>Add immediate data to ACCX with borrow</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>SUBB</td>
<td>Subtract Register from ACCX with borrow</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>SUBB</td>
<td>Subtract direct byte from ACCX with borrow</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>SUBB</td>
<td>Subtract indirect RAM from ACCX with borrow</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>SUBB</td>
<td>Subtract immediate data from ACCX with borrow</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>INC</td>
<td>Increment Accumulator</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>INC</td>
<td>Move register to Accumulator</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>INC</td>
<td>Move indirect RAM to Accumulator</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

Note that operations on SFR byte address 208 or on bit addresses 209-215 (i.e., the PSW or bits in the PSW) will also affect flag settings.

Notes on instruction set and addressing modes:
- Rn: Register R7-R0 of the currently selected Register Bank.
- direct: 8-bit internal data location's address. This could be an Internal Data RAM location (0-127) or a SFR [i.e., I/O port, control register, status register, etc. (128-255)].
- @Ri: 8-bit internal data RAM location (0-255) addressed indirectly through register R1 or R0.
- #data: 8-bit constant included in the instruction.
- #data: 16-bit constant included in the instruction.
- addr: 16-bit destination address. Used by LCALL and LJMP. A branch can be anywhere within the 64k-byte Program Memory address space.
- addr: 11-bit destination address. Used by ACALL and AJMP. The branch will be within the same 2k-byte page of program memory as the first byte of the following instruction.
- rel: Signed (two’s complement) 8-bit offset byte. Used by SJMP and all conditional jumps. Range is –128 to +127 bytes relative to first byte of the following instruction.
- bit: Direct Addressed bit in Internal Data RAM or Special Function Register.

All mnemonics copyrighted © Intel Corporation 1980
Table 7. 80C51 Instruction Set Summary (Continued)

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
<th>Byte</th>
<th>Oscillator Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV A,#data</td>
<td>Move immediate data to Accumulator</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>MOV Rn,A</td>
<td>Move Accumulator to register</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>MOV Rn,direct</td>
<td>Move direct byte to register</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>MOV Rn, @Ri</td>
<td>Move indirect RAM to direct byte</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>MOV Rn,#data</td>
<td>Move immediate data to register</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>MOV direct,A</td>
<td>Move Accumulator to direct byte</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>MOV direct, direct</td>
<td>Move register to direct byte</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>MOV direct, @Ri</td>
<td>Move indirect RAM to direct byte</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>MOV direct, #data</td>
<td>Move immediate data to direct byte</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>MOV @Ri,A</td>
<td>Move Accumulator to indirect RAM</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>MOV @Ri, direct</td>
<td>Move direct byte to indirect RAM</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>MOV @Ri, @RiA</td>
<td>Move immediate data to indirect RAM</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>MOV @Ri, DPTRA</td>
<td>Load Data Pointer with a 16-bit constant</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>MOVX A,@Ri</td>
<td>Move external RAM (8-bit addr) to A</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>MOVX A,@DPTR</td>
<td>Move external RAM (16-bit addr) to A</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>MOVX A,@RiPC</td>
<td>Move external RAM (relative to PC) to A</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>PUSH direct</td>
<td>Push direct byte onto stack</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>POP direct</td>
<td>Pop direct byte from stack</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>XCH A,Rn</td>
<td>Exchange register with Accumulator</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>XCH A, direct</td>
<td>Exchange direct byte with Accumulator</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>XCH A, @Ri</td>
<td>Exchange indirect RAM with Accumulator</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>XCHD A, @Ri</td>
<td>Exchange low order digit indirect RAM with A</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

BOOLEAN VARIABLE MANIPULATION

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
<th>Byte</th>
<th>Oscillator Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>JB rel</td>
<td>Jump if direct bit is set</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>JNB rel</td>
<td>Jump if direct bit is not set</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>JBC bit, rel</td>
<td>Jump if direct bit is set and clear bit</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>LJMP addr16</td>
<td>Long subroutine call</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>RET</td>
<td>Return from subroutine</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>RETI</td>
<td>Return from interrupt</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>AJMP addr16</td>
<td>Absolute jump</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>LCALL addr16</td>
<td>Long subroutine call</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>CALL addr11</td>
<td>Absolute subroutine call</td>
<td>2</td>
<td>24</td>
</tr>
</tbody>
</table>

All mnemonics copyrighted © Intel Corporation 1980
APPENDIX C: ALPHABETICAL INDEX

SYMBOLS

+5 VDC 3, 4, 39
80C32 2, 3, 6, 42, B-1
80C320 2, 3, 6, 42, B-7
89CRX2 6

A

A/D ABACO® 26
A/D CONVERTER 2, 8, 26, 52
 CALIBRATION 30
 CONVERSION TIME 10
 INPUT IMPEDANCE 11
 INPUT SELECTION 29
 INPUT SPECIFICATION 28
 RESOLUTION 10
 TEST POINT 29, 30
ABACO® I/O BUS 2, 4, 13, 39, 45, 55, A-6, A-7
 ADDRESSES 49
 ADDRESSES 45

B

BACK UP 2
 BT1 36
 CURRENT 11
 EXTERNAL BATTERY 11, 25
 ON BOARD BATTERY 11
BASCOM 8051 3, 44
BASIC 323 3, 43, 46
BATTERY STATUS 52
BIBLIOGRAPHY 59
BUS ABACO® 55
BUZZER 3, 8, 10, 49, 50

C

CARD VERSION 1
CCITT 18
CLOCK 4
CLOCK FREQUENCY 10
CONNECTORS 11
 CN1 13
 CN2 25
 CN3A 18
 CN3B 24
 CN4 12
CN6 26
CN7 14
CN8 16

CONSUMPTION ON +5 VDC 11
CONTROL LOGIC 6
CURRENT AVAILABLE ON +5 VDC 11
CURRENT LOOP 2, 10, 18, 28, 40
 NETWORK CONNECTION EXAMPLE 23
 POINT TO POINT CONNECTION EXAMPLE 22

D
DIN 46277 2
DIP SWITCH 2, 8, 10, 49, 51
DSW1 36, 45, 51

E
EEPROM 2, 10, 38, 45
EPROM 2, 10, 38, 45
EXTERNAL DEVICES 55

F
FLASH EPROM 2, 10, 38, 45
FMO 52 44, 48

H
HI TECH C 43, 46, 47, 48

I
I/O ABACO® 14, 16
I/O ADDRESSES 49
I/O CONNECTION 28
I/O SIGNALS 8, 10
IN SYSTEM PROGRAMMING 39
INTERFACES 28
INTERRUPTS MANAGEMENT 37

J
JEDEC 38
JUMPERS 31
 2 PINS JUMPERS 32
 J1 39
 J8 30, 37
 J22 40, 42
 J23 40, 42
 JS1 40, 42
JS2 40, 42
3 PINS JUMPERS 34
 J19 39
 J20 39
 J24 37, 40, 42
 J7 40, 42
5 PINS JUMPERS 32
 J2 38, 45

L
LD4BZ 50
LEDS 3, 8, 10, 36, 45, 49, 50

M
MAPS 45
MEMORY
 ADDRESSES 45
 MEMORIES ACCES TIME 10
 MEMORY CONFIGURATION 0 46
 MEMORY CONFIGURATION 1 47
 MEMORY CONFIGURATION 3 48

O
OPERATOR INTERFACES 28

P
P1 3, 29
P89CRX2 2
PORT
 A 14
 B 16
 C 14
POWER FAILURE 11, 37
 THRESHOLD 11
POWER SUPPLY 3, 4, 12
 EXTERNAL 3, 39
LED 36
 SWITCHING 3, 39
 VOLTAGE 11, 39
PPI 82C55 14, 49, 53

Q
R
REAL TIME CLOCK 2, 4, 8, 16, 45, 52
RELATIVE HUMIDITY 10
RESET 30
RESET KEY 3, 29
RS 232 2, 10, 18, 24, 28, 40
 POINT TO POINT CONNECTION EXAMPLE 20
RS 422 2, 10, 18, 28, 40
 DIRECTION 54
 POINT TO POINT CONNECTION EXAMPLE 20
TERMINATION NET 11
RS 485 2, 10, 18, 28, 42
 DIRECTION 54
 NETWORK CONNECTION EXAMPLE 21
 POINT TO POINT CONNECTION EXAMPLE 20
TERMINATION NET 11
RUN/DEBUG 51
RV1 30

S
SERIAL COMMUNICATION 3
 HARDWARE SERIAL LINE 3, 42
 SELECTION 40
 SOFTWARE SERIAL LINE 3, 42
SERIAL EEPROM 2, 8, 10, 38, 51
SIZE 10
SOFTWARE 43
SOLDER JUMPERS 38
SRAM 2, 10, 38, 45

T
TEMPERATURE RANGE 10
TIMER COUNTERS 2, 10
TP1 29, 30
TRANSZORB™ 3
TTL 28

V
VREF 28, 29, 30
W

WATCH DOG 2, 8, 10, 30, 45, 49, 50
 LED 36
 RESET TIME 10
WDOG 50
WEIGHT 10
WINISP 39