
Via dell' Artigiano, 8/6
40016 San Giorgio di Piano
(Bologna) ITALY
E-mail: grifo@grifo.it

http://www.grifo.it http://www.grifo.com
Tel. +39 051 892.052 (a. r.) FAX: +39 051 893.661

, GPC®, grifo ®, are trade marks of grifo ®

Edition 5.02 Rel. 15 June1999

grifo ®

ITALIAN TECHNOLOGY

CBZ
80

Z80 BASIC COMPILER

CBZ-80

QUICK REFERENCE

Via dell' Artigiano, 8/6
40016 San Giorgio di Piano
(Bologna) ITALY
E-mail: grifo@grifo.it

http://www.grifo.it http://www.grifo.com
Tel. +39 051 892.052 (a. r.) FAX: +39 051 893.661

, GPC®, grifo ®, are trade marks of grifo ®

Edition 5.02 Rel. 15 June1999

grifo ®

ITALIAN TECHNOLOGY

CBZ
80

Z80 BASIC COMPILER

CBZ-80

CBZ-80 is a powerful software development tool which allows to create programs
for all the Z80 Zilog-based boards.It features a complete support for single and
double precision floating point variables up to 54 digits accuracy. The development
environment is extremly friendly so that to cut off the developmnent time. The
BASIC runs on eprom and the genereted code, by means of GDOS® features, runs
on the on-board EEPROM or parallel EPROM; this way the need to use external
hardware (such as in circuit emulator, EPROM programmer, etc.) and the debugging
time are drastically reduced. Code productivity and hardware interventes ease
make this BASIC compilaer an unparalleled professional work tool at all levels.

GUIDA RAPIDA

Via dell' Artigiano, 8/6
40016 San Giorgio di Piano
(Bologna) ITALY
E-mail: grifo@grifo.it

http://www.grifo.it http://www.grifo.com
Tel. +39 051 892.052 (a. r.) FAX: +39 051 893.661

, GPC®, grifo ®, are trade marks of grifo ®

Edition 5.02 Rel. 15 June1999

grifo ®

ITALIAN TECHNOLOGY

CBZ
80

Z80 BASIC COMPILER

CBZ-80

DOCUMENTATION COPYRIGHT BY grifo ® , ALL RIGHTS RESERVED

No part of this document may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or computer language, in any form or
by any means, either electroni, mechanical, magnetic, optical, chemical, manual, or
otherwise, without the prior written consent of grifo ®.

IMPORTANT

Although all the information contained herein have been carefully verified, grifo ®

assumes no responsability for errors that might appear in this document, or for damage
to things or persons resulting from technical errors, omission and improper use of this
manual and of the related software and hardware.
grifo ® reserves the right to change the contents and form of this document, as well as the
features and specification of its products at any time, without prior notice, to obtain
always the best product.

SYSMBOLS DESCRIPTION

In the manuam couls appear the following symbols:

Attention: Generic danger

Attentione: High voltage

Trade Marks

 , GPC®, grifo ® : are trade marks of grifo ®.
Other Product and Company names listed, are trade marks of their respective companies.

ITALIAN TECHNOLOGY grifo ®

Page I CBZ-80 Rel. 5.02

GENERAL INDEX
QUICK REFERENCE TO CBZ-80 .. 1
 GENERALITIES ... 2
 CHARACTERISTICS OF CBZ-80 ... 3
 CBZ-80 REQUIREMENTS .. 5
 CONVENTIONS ... 6
 DATA TYPES AND THEIR LIMITS .. 7
 OPERATOR LIST ... 8
 STRING HANDLING FUNCTIONS LIST .. 9
 INPUT/OUTPUT INSTRUCTIONS LIST ... 11
 COMMANDS LIST... 13
 MACHINE SPECIFIC COMMANDS LIST .. 15
 DISK ACCESS COMMANDS LIST .. 16
 NUMERIC FUNCTIONS LIST ... 22
 CURSOR POSITIONING INSTRUCTIONS LIST ... 24

grifo ® ITALIAN TECHNOLOGY

Page II CBZ-80 Rel. 5.02

FIGURE INDEX
FIGURE 1: ON LINE HELP STARTING SCREEN .. 1
FIGURE 2: CONFIGURATION REQUESTER ... 3
FIGURE 3: INTERNAL COMMAND LINE EDITOR ... 5

ITALIAN TECHNOLOGY grifo ®

Page 1 CBZ-80 Rel. 5.02

FIGURE 1: ON LINE HELP SCREEN

QUICK REFERENCE TO CBZ-80QUICK REFERENCE TO CBZ-80

This quick reference to CBZ-80 programming language lists all its keywords, along with a short
description of function and use.

CBZ-80 is a powerful software development tool which allows high-level programming in
BASIC on all the grifo® boards based on Z80 microprocessor family. The code compiled by
CBZ-80 needs to use the functions and features of GDOS 80, a rom-based Operating System.
The development environment is extremly friendly and achieves to reduce the development time,
being anyway compliant to the operational feeling of all the BASICs. Unexperienced
programmers will be able to take advantage of its numberouses commands and functions,
becoming productive in few hours of work, while experienced programmers won't need any
training. However the great code performance and the rapidity of hardware intervents make the
CBZ-80 an unreplaceable work instrument for all the applications.
The compiler supports mathematic functions, control applications, data base management,
interfacing to generic consoles, Operating System calls and many other features designed to
solve industrial automation problems. The progrsmmer can choose between to develop
structrured code an non-structured code, obtaining a level of efficence and flexibility hard to see
in other development tools of equal price.

grifo ® ITALIAN TECHNOLOGY

Page 2 CBZ-80 Rel. 5.02

GENERALITIES

CBZ-80 is a composite programming and development environment made by a set of independent
items which the programmer has the liberty to use or not use without any limitation. Wishing to make
comparisions amongst CBZ-80 and other well-known BASIC programming tools, we detect that
CBZ-80 has an environment similar to GWBASIC's one and instruction set comparable to the
QUICKBASIC's one.
CBZ-80 enables to take the greatest advantage of the hardware resources from the boards you are
using, because you may use them directly by the high-level instructions, without no need to develop
specific firmware. For example, CBZ-80 has the capacity to manage hardware resources like serial
lines, printers, mass storage devices, operator interfaces, etc.
CBZ-80 software package is made up by a set of disks, a rich reference manual and a great number
of examples (both source and compiled code) showing how to employ the control board's hardware
resources.

ITALIAN TECHNOLOGY grifo ®

Page 3 CBZ-80 Rel. 5.02

FIGURE 2: CONFIGURATION REQUESTS

CBZ-80 FEATURES

Fundamentally CBZ-80 has two main working modalities: configuration mode and source
development mode. The main characteristics of these two modalities are described as follows:
- Configuration mode: in this situation becomes possible to set many inernal parameters of the

compiler which affect directly or indirectly the code generation.
- Precision of floating point variables (from 2 to 54 digits)
- Maximum number of open files at the same time (from 0 to 99)
- Method of enumeration of the indexes for arraies and matrixes
- Approximation threshold for real variables
- Type of undeclared variables
- Array bounds check
- Automatic uppercase conversion
- Dimensions of indexed memory
- Shortcuts to the most frequently used editor functions
- Console control sequences. By default CBZ-80 is configured for supporting the ADDS

VIEWPOINT standards, which is used by GET 80 and all the QTP xxx operator
interfaces.

- Memory area dedicated to chains
- Source development mode: this is the situation normally used by the end user and it includes the

editor, the compiler and the debugging environment. Use of this mode is common to all languages,
it allows to:

1) write and correct the source of the application (this phase can be performed by the integrated
 editor or an external ASCII editor, like the GET 80's one).
2) upload the source to the board using the features of GDOS 80 file system.

grifo ® ITALIAN TECHNOLOGY

Page 4 CBZ-80 Rel. 5.02

3) compile the uploaded program, to get the compiled code. In case of error, please return back
 to point 1
4) execute the compiled code directly on the control board . If during the functional test of the
 program problems are detected, you must go back to point 1
5) recompile the code in the final GDOS 80 executable form (for example ready for EPROM,
 or FLASH EPROM burning).

Amongst the many characteristics of this development environment, we remind:
- Numbered or unnumbered BASIC source code; when line numbers are not used entry

points are indicated by labels.
- Standard syntax; it allows to reuse code written and already tested on other BASIC

programming environments.
- Four different data types: integer, single and double floating point, string.
- Wide range of operators including mathematical, relational, logical and shift operators.
- Complete set of mathematic functions including trigonometric and trascendental functions.
- Support for the most commonly used numeration bases (binary, hexadecimal, octal and

decimal).
- Instruction set dedicated to the use of an operator interface (cursor positioning, partial

or total screen clear, check for key pressed, data input, etc.). By means of these functions
you may control the complete QTP xxx terrminals serie.

- Wide range of GDOS 80 file system management instructions set. There is no more need
 for low-level memory and data area management. GDOS 80 takes care of this by
manipulating RAM data files, which can be created, deleted, renamed, copied,
downloaded etc.

- Interesting string manipulation instructions set (concatenation, fragmentation, search,
conversion etc.).

- Indexed management of a memory area, which can be addressed using pointers.
- Powerful control flow instructions set, which allows to perform itersations, single or

multiple tests, define functions and procedures, run other programs etc.
- Basic low-level hardware resources management instructions set, like I/O instructions,

direct memory access, machine language routines, absolute calls to external procedures
etc.

- High level devices management instructions set, which, by means of GDOS 80 features,
allows easy use of peripherals like printers and serial lines.

- Different compilation modalities which permit to optimize compilation times and
compiled code.

- Complete management of chain technique, which makes possible to run any number of
programs sequentially with data forward communication. Using this powerful feature,
the problems of automaton involving great amounts of data and code can be easily
solved.

- On line help, easy to use and capable to give a whole description of any part of CBZ-80,
makes training faster.

- No license fee or overcharge, developers are free to create progreams without even
informing grifo® .

ITALIAN TECHNOLOGY grifo ®

Page 5 CBZ-80 Rel. 5.02

FIGURE 3: INTERNAL COMMAND LINE EDITOR

CBZ-80 REQUIREMENTS

Only three elements are required to be immediatly up and running:
- A Z80 based control board like:

GPC® 80F
GPC® 81F
GPC® 011
GPC® 15A
GPC® 15R
GPC® 153
GPC® 154
GPC® 150

- A GDOS 80 operating system for the desired control board.
- A personal computer, connected to the control board through a serial line.

grifo ® ITALIAN TECHNOLOGY

Page 6 CBZ-80 Rel. 5.02

CONVENTIONS

This quick reference uses the following typographic conventions:

KEYWORDS (boldface uppercase)
Keywords of CBZ-80.

<placeholders> (enclosed in angular brackets)
Variables, expressions, constants or other informations needed on each particular situation.

[optional values] (enclosed in square brackets)
Items that are not required.

item repeating . . . (followed by ellipsis (three dots))
You may add items with the same form.

ITALIAN TECHNOLOGY grifo ®

Page 7 CBZ-80 Rel. 5.02

DATA TYPES AND THEIR LIMITS

Here follows a list of the data types provided by CBZ-80, their bound values and their memory
occupation in bytes.

Type Minimum value Maximum value Memory occupation (in bytes)
INTEGER -32768 +32767 2
REAL (BCD) -9.999E+63 +9.999E+63 (From 6 to 54 digits) From 2 to 28
HEXADECIMAL &H0000 &HFFFF 2
OCTAL &O000000 &O377777 2
BINARY &Xbbbbbbbbbbbbbbbb 2
STRING From 0 to 256 characters (see DEF LEN) From 0 to 256

Overflow errors are raised only for BCD type.

To implicitly declare the type of a variable you shold write its name followed by an opportune
character, e.g.: DIM B% declares B% as an integer.

Type Character
INTEGER %
REAL (single precision) !
REAL (double precision) #
STRING $

grifo ® ITALIAN TECHNOLOGY

Page 8 CBZ-80 Rel. 5.02

OPERATORS LIST
C = command mode

 R = run mode
^ or [R, C
Power raising,only for real numbers.

+ - * / \ R, C
Sum, subtraction, multiplication, division and real numbers division.

< = > <= or =< >= or => <> R, C
Conditional operators. Zero means false, one means true.

<numerc expression1> AND <numeric expression2> R, C
If the two expressions are true (non-zero), result is true, where true=1 and false=0.
Also used to compare bits with binary digits.

<expr1> MOD <expr2> R, C
Returns the remainder of then integer division between <espr1> and <espr2> with sign of
<espr1> leading.

NOT <expr> R, C
Returns the opposite of <expr>.

<expr1> OR <expr2> R, C
Performs logical or biwise OR.

<expr1> XOR <expr2> R, C
Performs logical or biwise XOR.

<expr1> >> <expr2> R, C
Performs the logical right shift of of <expr1>'s bits by <expr2> positions.

<espr1> << <espr2> R, C
Performs the logical left shift of of <expr1>'s bits by <expr2> positions.

ITALIAN TECHNOLOGY grifo ®

Page 9 CBZ-80 Rel. 5.02

STRING HANDLING FUNCTIONS LIST

ASC(<constant, variable string, or substring reference>) R, C
Return the decimal value of argument string's first char, according to the ASCII code translation.
e. g..: ASC(“B”)=66, ASC(“CLUNK”)=67 (note: ASC is the inverse of CHR$ function).

BIN$(<numeric expression>) R, C
Calculates binary value of <numeric expression>. e. g.: BIN$(255)=0000000011111111
Inversely &X0000000011111111=255

CHR$(<numeric expression>) R, C
Return the ASCII char corresponding to the value of <numeric expression>. Argument must be
an integer in the range 0 e 255.
e. g.: CHR$(65)=”A”, CHR$(97)=”a”, CHR$(32)=” “ (blank)

DATE$ R, C
Returns system date in the format month/day/year.

HEX$ (<expr>) R, C
Converts the value of <expr> in hexadecimal format.
e. g.: HEX$ (255)=FF , HEX$ (170)=AA ,HEX$ (85)=55

INDEX$ (<string>) R
INDEX$ (<string>, <expr>)
Returns the index number associated to <string>. If <expr> is present then theserch for <string>
will start from position <expr>.
e. g.: INDEX$ (0) = “CIAO”, INDEX$ (1) = “CIAO1” ,INDEX$ (2) = “CIAO2” INDEXF
(“CIAO”)=0, INDEXF (“CIAO1”,2)=-1

INSTR (<expr>, <string1>, <string2>) R
Returns the position of <string2> in <string1>. <expr> specificates the starting position of
search.
e. g.: A$=”Prova ciao”B$=”ciao”INSTR (1, A$, B$)=7

LEN (<string>) R, C
Returns the length of <string>.
e. g.: A$=”Prova ciao”PRINT LEN (A$)= 10

LEFT$ (<string>, <expr>) R
Selects a substring of <expr> characters from <sring>.
e. g.: A$=”Prova ciao”PRINT LEFT$ (A$,3)=”Pro”PRINT LEFT$ (A$, 5)=”Prova”

MID$ (<string>, <expr>, <expr>) R, C
Return a substring of <string> starting at the <expr1>th character of <string> and <expr2>
characters long.

MKB$ (<expr>) R, C
Returns a string which contains the compressed floating point value of <expr>.

grifo ® ITALIAN TECHNOLOGY

Page 10 CBZ-80 Rel. 5.02

MKI$ (<expr>) R, C
Returns a two-characters string specified by the two-bytes integer <expr>.

OCT$ (<expr>) R, C
Returns a string containing the octal (base 8) value of <espr>.

PSTR$ (<var>) R
Returns a string whose address is the value of variable <var>.

RIGHT$ (<string>, <expr>) R, C
Returns the last< expr> characters of <string>.

SPACE$ (<expr>) R, C
Returns a string containing<expr> blanks.

STR$ (<expr>) R, C
Returns a string containing the numeric value of <expr>.

STRING$ (<expr1>, <string> or <expr2>) R, C
Returns a string containing <expr1> times the first chracter of <string> or the ASCII char
corresponding to the code <expr2>.

TIME$
Return system time in the format hour:minute:seconds.

UCASE$ (<string>) R, C
Converts <string> in uppercase.

UNS$ (<expr>) R, C
Returns a string containing the unsigned decimal value of <expr>.

ITALIAN TECHNOLOGY grifo ®

Page 11 CBZ-80 Rel. 5.02

INPUT/OUTPUT INSTRUCTIONS LIST

CLS R, C
Clears the screen and postions the cursor in the upper left corner.
CLS <numeric expression >: Fills the screen with characters whose ASCII code is specified by
<numeric expression >.
CLS LINE : Clear the line where the cursor finds.
CLS PAGE : Clears from the cursor position to the bottom of the screen.

DEF TAB =<number> R
Defines the number of characters (blanks) printed by a tabulation in the commands PRINT ,
PRINT# or LPRINT , ranging from 1 to 255 (default 16).

INPUT [@ (exprx,expry)] [;] [!] [&expr] [“string”;] <variable> [, <var.>] R
@ (exprx,expry) Optional, allows to place the cursor at x, y coordinates.
; Optional, suppresses the trailing carriage return/line feed.
! Optional, enables automatic carriage return after a maximum number

of input characters.
&<expr> Optional, enables automatic carriage return after <expr> input characters.
"string" Optional, prints "string" as a prompt.
<variabile> Any variable.

INPUT is used to input numeric or string values from keyboard into variables.

INKEY$ R
Returns a string containing the key pressed. If no key has been pressed then returns an empty
string.
e. g..: Type “A” ,A$=INKEY$, A$=”A”

LINEINPUT [@ (expr.x,expr.y)] [;] [!] [&expr] [“string”;] <variable string> R
LINEINPUT is analog to INPUT exept for it can input only into string variables. LINEINPUT
accepts any ASCII value.

LPRINT [variables, constants, ...] R, C
Prints the value of its arguments to the printer. Precede it by a colon character <::> to use it in the
Standard Line Editor (:LPRINT).

PAGE R, C
Returns the current line position of the printer.

PRINT [{ @ or % } (<expr1>, <expr2>)] USING <format string> ; <expr> ; [USING ...]
[<list of values to print>] R, C
Writes informations to the current device, normally the screen.
@ and % with <expr1> and <expr2> allow to place the cursor anywhere on the screen, USING
<format string> allows to format the text.

SPC (<expr>) R, C
Prints <expr> spaces.

grifo ® ITALIAN TECHNOLOGY

Page 12 CBZ-80 Rel. 5.02

TAB (<expr>) R
Moves cursor to the position <expr>.

WIDTH [LPRINT] [=] <expr>
Sets the print width for PRINT or LPRINT .

ITALIAN TECHNOLOGY grifo ®

Page 13 CBZ-80 Rel. 5.02

COMMANDS LIST

APPEND <line number> <file name>
Inserts partof a program or an ASCII subroutine (without lin numbers) starting from the
specified line. e. g.: APPEND 1000 PROGRAM.ASC

APPEND* <line number> <file name>
Deletes REM's and blankc from an ASCII saved file, saving space in memory.

AUTO
Starts auto line number enumeration.
AUTO <number> Starts auto enumeration from <number> line number.
AUTO <number>,<increment> Starts auto enumeration from <number> line number and
<increment> as increment step.
AUTO ,<increment> Starts auto enumeration with <increment> as increment step.

DELETE <line number1> - <line number2>
Every line with number ranging from <line number1> to <line number2> is deleted. <line
number2> must be greater than <line number1>.

DIR <drive>
Lists the directory of the specified drive.

EDIT <line>
E <line>
Used to correct a specified line. Its sub-commands make the editing easy and fast.
I-Enters in Insert mode, exits pressing <ESC>.
X-Go to the end of the line and enter insert mode.
<n>D-Deletes <n> characters from the current cursor position.
<n>C<key>-Replaces from the character under the cursor with <key> character <n> times.
H-Deletes everything from the current cursor position to the end of the screen and enters insert
mode.
<n>S<key>-Searches the <n>th occurrence of <key> .
L-Lists line being edited, then performs a carriage return/line feed.
A-Aborts changes, restores the line like it was before the editing.
<n>K<key>-Deletes text from cursor to the <n>th occurrence of <key> .
<n> <SP>-Moves cursor <n> characters to the right.
<n> <BS>-Moves cursor <n> characters to the left.
 <ESC>-Exits insert mode and waits for a new command.
 <ENTER>-Exits EDIT and lists the changed line.
 <BREAK>-Abort key, exits EDIT session, no changes made.

FIND <string>
FIND #<string>
Locates text in a program, very useful with EDIT command, to find the next string type “;” or
FIND <ENTER>.
Character “#” allows to find a line by its number.
e. g.: FIND #1234508000 GOTO 12345

grifo ® ITALIAN TECHNOLOGY

Page 14 CBZ-80 Rel. 5.02

HELP
HELP <number>
Activates HELP menu, press the space key to continue, to exit you must reach the end of the
HELP sequence.
If a number is specified then only that HELP item will be showed.

L [IST] [+][*] <line number> or <label>
Used from the Standard Line Editor, allows to list the content of the current program to the
screen.

LLIST
Same syntax as LIST , sends its output to the printer.

LOAD [*] [“] <file name> [“]
Used from the Standard Line Editor,allows to load into memory an ASCII-saved or a compiled
program. If the program doesn't have line numbers they will be added with one as increment .
LOAD * deletes comments and unnecessary blanks to save space in memory.
e. g.: LOAD PROVA.ZBA

MEM [ORY]
In command mode, returns informations about the use of the memory.

MERGE [“] <file name> [“]
Merges a line-numbered program on disk with the program in memory.

NEW
Deletes the program in memory.

QUIT
Exits from CBZ-80.

RENUM [new] [, [old]][, increment]
Recalculates the line numbers.

RUN [[+ or *][“] <file name> [“]]
Compiles and runs a program.

SAVE [[+ or *][“] <file name> [“]]
Saves the program in memory.

ITALIAN TECHNOLOGY grifo ®

Page 15 CBZ-80 Rel. 5.02

MACHINE SPECIFIC COMMANDS LIST

CALL <number> R, C
Executes a machine languagesubroutine starting at the specefied address.

CALL <line number> or <label> R
Executes a machine languagesubroutine located at the specefied <line number> or <label> e. g.:
80 CALL LINE 100
90 CALL LINE “LABEL”
100 MACHLG 34, 21, x%, 255, 9:RETURN
110 “LABEL” : MACHLG 34, 21, x%, 255, 9:RETURN

DEF USR <digit>=<expr> R, C
Sets the starting address of the user defined machine language subroutines (USR0 to USR9).

INP (<expr>) R
Allows to read the data present at the specifies I/O port.
e. g.: X=INP(65535), X=0-255

LINE <line number> or <label> R, C
This function calcutlates the byte size in memory of a compiled line.
If it's used with CALL, it calls a machine laguage program line.

OUT <port>, <data> R
Outputs <data> to the specified <port>.

PEEK [WORD] or LONG (<expr>) R, C
Returns the content of the memory location addressed by <expr>.

POKE [WORD] or LONG <expr1>, <expr2> R, C
Writes the value of <expr2> into the memory location addressed by <expr1>.

MACHLG [bytes] - or - MACHLG [words] - or - MACHLG [variables] R
Inserts bytes directly into the compiled program.

USR <number> (<word expr>) R
User defined functions.

grifo ® ITALIAN TECHNOLOGY

Page 16 CBZ-80 Rel. 5.02

DISK ACCESS COMMANDS LIST

ERRMSG$ <expr> R, C
Returns the disk error message string corresponding to the value of <expr>.

ERROR = <expr>
Sets the disk error number.

ERROR R
Returns the disk error number, zero means no errors found, this function is used in conjunction
with ON ERROR. After a disk error occurred, ERROR must be set to zero.

CLOSE <#numeric expression1>,<#numeric expression2>,....... R
CLOSE closes the file(s) opened with OPEN whose number(s) is specified as arguments. If no
number is given all files will be closed.

INPUT # <expr> , <variable> , <variable1> R
It reads data from a disk file (previously opened by OPEN) or other devices specified by the
value of <expr> until a carriage return, “,” or an END OF FILE is encountered, or 255 characters
are read.
e. g.: OPEN 0, 1, “NOME FILE” INPUT #, A$

KILL <string> R, C
Deletes the disk file whose name is specified by the value of <string>.
e. g.: KILL “PROVA.COM”

LINEINPUT # <expr> , < string variable> R
This command works like INPUT ,the advantage of LINEINPUT is its capacity to recognize
more characters, like comma “,”, EOF. In addition it sets ERROR = End Of File.

LOC (<expr>) R
Returns the position pointer into the current record of the file specified by the value of <expr> .
e. g.: OPEN”R”,1,”FILE” RECORD#1,6,8 PRINT LOC(1) prints 8.

LOF (<expr>) R
Returns the last valid record number for the file specified by the value of <expr>.

ON ERROR [GOSUB] <line number> or <label> or 65535 R
Disk errors management.

OPEN “I” or “O” or “R”, [#] <file number>, <file name> [, <record length>] R
Opens a file.

PRINT # <expr>, <list of values to print> R
Writes the list of values to a file or another device specified by <expr>.

ITALIAN TECHNOLOGY grifo ®

Page 17 CBZ-80 Rel. 5.02

READ # <file number >, <var> or < string>;<length> [, ...] R
Reads strings or numbers saved in compressed format by WRITE# .

RECORD [#] <file number>, <record number> [, <position in record>] R
Moves the file position pointer anywhere in a record.

REC (<file number>) R
Returns the file position pointer relative to a file whose number is specified by the value of <file
number>.

RENAME <name1> TO <name2> R, C
Renames the disk file <name1> to the new name<name2>.

ROUTE [#] <expr> R
Redirects output to a device specified by the value of <expr>.

RUN [<file number>] R
Runs the program in memory. If <file number> is present it runs the program stored in the open
file <file number>.

WRITE# <expr1>, <var> or <string>;<length> [, ..] R
Writes the content of variables and strings to a file.

grifo ® ITALIAN TECHNOLOGY

Page 18 CBZ-80 Rel. 5.02

INSTRUCTIONS LIST

CLEAR R, C
Sets all varibles to zero or to a null value.
CLEAR <number> Sets aside <number> bytes for INDEX$.
CLEAR END Clears all variables not being used.
CLEAR INDEX$ Sets all elements of INDEX$ array to empty strings.

DATA <list of constants>, ,.... R
It stores string and/or numeric comma-separated constants that can be stored into variables by
the READ instruction. DATA instructions may appear anywhere in the program, the constants
are read in the order they are written in the program lines.

DEF R
DEFINT <numeric variable>, , :Defines as % integer the listed variable(s).
DEFSNG <variabile numerica>, , :Defines as ! single precision the listed variable(s).
DEFDBL <variabile numerica>, , :Defines as # double precision the listed variable(s).
DEFSTR <variabile numerica>, , :Defines as $ string the listed variable(s).

DEF FN <variable> = <expression>
Sets a function, specified by <expression>, to be executed by FN <variable> .

DEF LEN <number> R
Sets the default length of strings, ranging from 1 to 255 .

DELAY <expr> R, C
Produces a delay of <expr> milliseconds, the precision of timing depends on the CPU clock.

DIM R
Preserves an area of memory to store declared strings and arrays, it guarantees enough space in
memory to satisfy the demand of room in every variable declaration. DIM automatically
initializes the variables decleared in it.
e. g.: DIM A$(30),Q(100),Z(5,2), DIM X7(X,Y),X8(X,X,X), DIM C$(100*3)

DO UNTIL R
DO instruction determins the entry point of a loop that will be executed until the expression after
UNTIL is TRUE.

ELSE <line number> or <label> R, C
ELSE <instruction>
Used in conjuction with the IF instructions,executes the code following it whether the condition
after IF is FALSE.

END R
Stops the program and returns to the operating system.

END FN = <expr> R
Used to close the LONG FN instruction. <expr> can be any numeric type expression if long
expression is numeric and MUST be a string if type of long expression is string.

ITALIAN TECHNOLOGY grifo ®

Page 19 CBZ-80 Rel. 5.02

END IF R
See LONG IF .

FN <name> (<expr1>, <expr2>,) R
Like FN instruction, in addition this syntax may pass variables to the subroutines defined using
DEF FN or LONG FN .
e. g.: LONG FN Prova$ (x$)HELP command
END FN = x$ => FN Prova$ (A$)

FOR <variable> = <expr1> TO <expr2> STEP <expr3>...NEXT <variable> R
First <variable> is initialized to <expr1>, then starts a loop that repeats up to when the value of
<variable> is <expr2>, STEP determines the increment of <variable>'s value, if omitted
increment is 1. The loop is not executed if <expr1> is greater than <expr2> and <expr3> is
negative.

GOSUB <line number> or <label> R
Jumps to thespecified line, returns to the calling point when a RETURN instruction is
encountered.

GOTO <line number> or <label> R
Jumps to thespecified line.

IF <logical expression> THEN <instruction> R, C
IF <expression > THEN <instruction> ELSE <instruction>
When <logical expression> is TRUE <instruction> after THEN is executed, otherwise if an
ELSE clause is specified <instruction> after itis executed. If no ELSE is present and <logical
expression> is FALSE the next instruction after IF is executed (sequential order).
Writing a line number or a label after THEN or ELSE will cause a jump to that location if
proper conditions occur.

INDEX$ (<expr1>) = <string1>
INDEX$I (<expr2>) = <string2>
INDEX$D (<expr3>)
Replaces <string1> into the existing string specified by <expr1>, inserts <string2> in the
position specified by <expr2>; deletes the string specified by <expr3>.

LET <variable> = <expression> R
Assings the value of <expression> to <variable>. Keyword LET is always optional.
e. g.: LET A=100 => A=100LET A$=”Prova ciao” => A$=”Prova ciao”

LONG FN <function name > [(var [, var [, ...]])] . . END FN [= expr] R
Like DEF FN, allows to define functions across more then one line.

LONG IF . . [XELSE] . . ENDIF R
Allows to structure the IF - THEN - ELSE construct across more then one line.

NEXT R
See FOR.

grifo ® ITALIAN TECHNOLOGY

Page 20 CBZ-80 Rel. 5.02

ON <expr> GOSUB <line number> [, <line number> [, ...]] R
Calls one of the subroutines listed according to the value of<expr>.

ON <expr> GOTO <line number> [, <line number> [, ...]] R
Jumps to the specified position according to the value of <expr>.

PSTR$ (<var>) = <costant string> R
Store the address of <constant string> in the variable <var>.

RANDOM [IZE] [<expr>] R
Regenerates the random numbers seed.

READ [<var> or PSTR$(<var>) [, ...]] R
Reads constants strings and/or numeric values listed in DATA instructions.

REM [<string>] R, C
Allows to insert a comment.

RESTORE [<expr>] R
Positions the data item pointer to the <expr> position or to the top of the list if <expr> omitted.

RETURN [<line number>] R
Continues execution after the last GOSUB or ON GOSUB instruction.

STEP R
See FOR.

STOP R
Stops execution and prints the number of the last executed line.

SWAP var1, var2 R
Swaps the values of var1 and var2.

TROFF R, C
Disables instruction tracing.

TRON B or S or X R, C
Enables instruction tracing.

UNTIL R
See DO.

USR <number> (<expr>) R
See DEF USR.

WEND R
See WHILE .

ITALIAN TECHNOLOGY grifo ®

Page 21 CBZ-80 Rel. 5.02

WHILE <expr> . . WEND R
Loop repeated until <expr> is TRUE.

XELSE R
See LONG IF .

grifo ® ITALIAN TECHNOLOGY

Page 22 CBZ-80 Rel. 5.02

NUMERIC FUNCTIONS LIST

ABS(<numeric expression>) R, C
Returns the absolute value of <numeric expression>.
e. g.: ABS(3)=3, ABS(-3)=3, ABS(0)=0

ASC(<string constant, string variable, substring>) R, C
Retuns the ASCII code of the first character of argument string.
e. g.: ASC(“B”)=66, ASC(“CLUNK”)=67 (note: ASC is the inverse function of CHR$).

ATN (<numeric expression >) R, C
Returns an approximation of arctangent of <numeric expression> expressed in radians.
e. g.: ATN(5)=1.3734007, ATN(1.7)=1.0390722

COS(<numeric expression >) R, C
Return the cosin of <numeric expression > expressed in radians.
e. g.: COS(0)=1, COS(3.1415926/2)=0

CVB <string> R, C
Returns the binary floating point value of the first characters stored in <string>.

CVI <string> R, C
Returns the binary floating point value of the first two characters stored in <string>.

EXP(<numeric expression >) R, C
Returns the exponential of base E of the value of <numeric expression >
e. g.:EXP(0)=1, EXP(2)=7.3890562, EXP(-2.3025851)=.1, EXP(1)=2.7182817

FIX <expression> R, C
Truncates all fractionary digits of <expression>.
e. g.: PRINT FIX (123.456)=123

FN <name> (<expression1>, <expression2>,) R
Calls a named expression previously defined by DEF FN or LONG FN .
e. g..: DEF FN A#= SQR(4) => PRINT FN A# =2

FRAC (<expression>) R, C
Truncates all integer digits of <expression>.
e. g.: FRAC (123.456) = .456

INDEXF (<string>) R
INDEXF (<string>, <expression>)
Return the index number of <string>, if <expression> is present starts the search for <string>
from element <expression>.
e. g.: INDEX$ (0) = “CIAO”, INDEX$ (1) = “CIAO1” ,INDEX$ (2) = “CIAO2” INDEXF
(“CIAO”)=0, INDEXF (“CIAO1”,2)=-1

ITALIAN TECHNOLOGY grifo ®

Page 23 CBZ-80 Rel. 5.02

INT (<numeric expression>) R, C
Returns the greatest integer lower or equal than the value of <numeric expression>.
e. g.: INT(3)=3, INT(3.9)=3, INT(-3.5)=-4

LOG (<expr>) R, C
Returns the natural logarithm of <expr>. It's the inverse function of EXP.

MAYBE R, C
Returns TRUE (-1) or FALSE (0) with equal probability.

MEM R
Returns the number of bytes available for the INDEX$ array.

PAGE [[<expr1>][, [<expr2>][, [<expr3>]]]] R, C
Formats printer output.

POS (<expr>) R, C
Returns the horizontal cursor position for the device specified by <expr>.

RND (<expr>) R, C
Returns a random integer number ranging between 1 and <expr>.

SGN (<expr>) R, C
Returns the sign of an expression.

SIN (<expr>) R, C
Returns the trigonometric sin of <expr> in radians.

SQR (<expr>) R, C
Returns the square root of <expr>.

TAN (<expr>) R, C
Returns the trigonometric tangent of <expr> in radians.

VAL (<string>) R, C
Returns the value of the figure contained in <string>.

VARPTR (<var>) R
Returns the address of <var>.

grifo ® ITALIAN TECHNOLOGY

Page 24 CBZ-80 Rel. 5.02

CURSOR POSITIONING INSTRUCTIONS LIST

LOCATE <exprx>, <expry>, [<exprcursor>] R
Positions the cursor at the coordinates specified by <exprx> and <expry>. Optionally can turn
on or off the cursor. (zero=off, non-zero=on).

