PRELIMINARY DOCUMENTATION AAC 06 (Axis Acquisition Card 6 counter)

-იხიc-o___●•[®])(ხυ /) _____ grifo[®] -

ITALIAN TECHNOLOGY

K1 - CONNECTOR FOR ABACO[®] BUS

K1 is a 64 pins, male, 90°, DIN 41612 connector with 2.54 pitch.

On K1 are available all the industrial **ABACO**[®] BUS signals and it can be used for connections to many other peripheral cards. In the table below there are the standard pin outs both for 8 bits and 16 bits CPU and the signal connected on **ACC 06**. All signals follow TTL standard.

Α	Α	Α	PIN	С	С	С
16 bits BUS	8 bits BUS	AAC 06		AAC 06	8 bits BUS	16 bits BUS
GND	GND	GND	1	GND	GND	GND
+5 Vdc	+5 Vdc	+5 Vdc	2	+5 Vdc	+5 Vdc	+5 Vdc
D0	D0	D0	3	N.C.		D8
D1	D1	D1	4	N.C.		D9
D2	D2	D2	5	N.C.		D10
D3	D3	D3	6	N.C.	/INT	/INT
D4	D4	D4	7	N.C.	/NMI	/NMI
D5	D5	D5	8	N.C.	/HALT	D11
D6	D6	D6	9	N.C.	/MREQ	/MREQ
D7	D7	D7	10	/IORQ	/IORQ	/IORQ
A0	A0	A0	11	/RD	/RD	/RDLDS
A1	A1	A1	12	/WR	/WR	/WRLDS
A2	A2	A2	13	N.C.	/BUSAK	D12
A3	A3	A3	14	N.C.	/WAIT	/WAIT
A4	A4	A4	15	N.C.	/BUSRQ	D13
A5	A5	A5	16	/RESET	/RESET	/RESET
A6	A6	A6	17	/M1	/M1	/IACK
A7	A7	A7	18	N.C.	/RFSH	D14
A8	A8	N.C.	19	N.C.	/MEMDIS	/MEMDIS
A9	A9	N.C.	20	N.C.	VDUSEL	A22
A10	A10	N.C.	21	N.C.	/IEI	D15
A11	A11	N.C.	22	N.C.		
A12	A12	N.C.	23	N.C.	CLK	CLK
A13	A13	N.C.	24	N.C.		/RDUDS
A14	A14	N.C.	25	N.C.		/WRUDS
A15	A15	N.C.	26	N.C.		A21
A16		N.C.	27	N.C.		A20
A17		N.C.	28	N.C.		A19
A18		N.C.	29	N.C.	/R.T.	/R.T.
+12 Vdc	+12 Vdc	N.C.	30	N.C.	-12 Vdc	-12 Vdc
+5 Vdc	+5 Vdc	+5 Vdc	31	+5 Vdc	+5 Vdc	+5 Vdc
GND	GND	GND	32	GND	GND	GND

FIGURE 1: K1 - ABACO® BUS CONNECTOR

AAC 06

Signals description:

8 bits CPU

A0-A15	=	0	- Address BUS
D0-D7	_	I/O	
/INT	=	I	- Interrupt request
/NMI	=	Ι	- Non Maskable Interrupt
/HALT	=	0	- Halt state
/MREQ	=	0	- Memory Request
/IORQ	=	0	- Input Output Request
/RD	=	0	- Read cycle status
/WR	=	0	- Write cycle status
/BUSAK	=	0	- BUS Acknowledge
/WAIT	=	Ι	- Wait
/BUSRQ	=	Ι	- BUS Request
/RESET	=	0	- Reset
/M1	=	0	- Machine cycle one
/RFSH	=	0	- Refresh for dynamic RAM
/MEMDIS	5 =	Ι	- Memory Display
/VDUSEL	=	Ο	- VDU Selection
/IEI	=	Ι	- Interrupt Enable Input
CLK	=	0	- System clock
R.T.	=	Ι	- Reset button
+5 Vdc	=	Ι	- Power supply at +5 Vdc
+12 Vdc	=	Ι	- Power supply at +12 Vdc
-12 Vdc	=	Ι	- Power supply at -12 Vdc
GND	=		- Ground signal

16 bits CPU

A16-A22	=	0	- Address BUS
D8-D15	=	I/O	- Data BUS
/RD UDS	=	0	- Read Upper Data Strobe
/WR UDS	=	0	- Write Upper Data Strobe
/IACK	=	0	- Interrupt Acknowledge
/RD LDS	=	0	- Read Lower Data Strobe
/WR LDS	=	0	- Write Lower Data Strobe
N. C.	=		- Not Connected

NOTE

Directionality indications as above stated are referred to a master (GPC®) board and have been kept untouched to avoid ambiguity in case of multi-boards systems.

CN1 - CONNECTOR FOR COUNTER INPUTS

CN1 is a 26 pins, female, 90°, high density D connector.

It is placed on the front side of the card and it is used to connect the inputs of the six counters, each one of these is provided of three optocoupled signals, NPN type.

The power supply of all these inputs can be +12 Vdc or +24 Vdc according with proper jumpers configurations, as described in the following paragraphs.

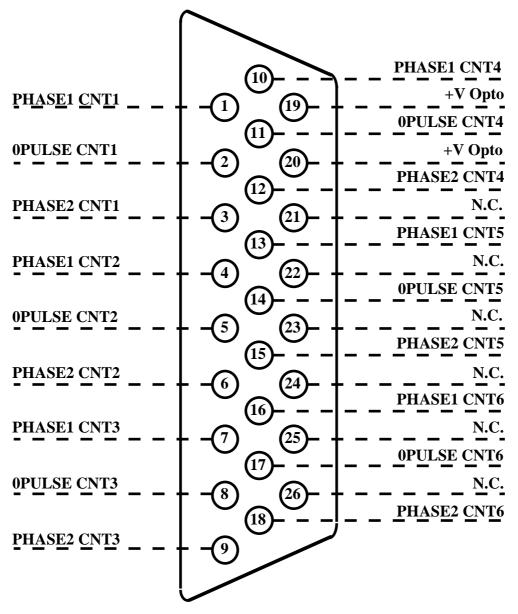


FIGURE 2: CN1 CONNECTOR FOR COUNTER INPUTS

Signals description:

PHASE1 CNTn	= I - Phase 1 input signal for counter n.
PHASE2 CNTn	= I - Phase 2 input signal for counter n.
0PULSE CNTn	= I - Zero pulse input signal for counter n.
+V Opto	= I - Gavanically insulated voltage for optocoupled NPN inputs power
	supply.
N.C.	= - Not connected.

Page 4

AAC 06

Rel. 5.00

JUMPERS

On AAC 06 there are 32 jumpers for card configuration. Connecting these jumpers, the user can define for example the counters connections, the external power supply type and so on. Below there is the jumpers list complete of relative functions:

JUMPER	POSITION	FUNCTION
J1	1-2 2-3	The card manages the signal /M1 available on K1 (pin 17C) The card doesn't manages the signal /M1 available on K1 (pin 17C)
J2	1-2	It connects PHASE1 CNT4 to signal for counting up (increment) of counter 4
	2-3	It connects PHASE1 CNT4 to signal for measuring with direction discriminator of counter 4
J3	1-2	It connects PHASE2 CNT4 to signal for counting down (decrement of counter 4
	2-3	It connects PHASE2 CNT4 to signal for measuring with direction discriminator of counter 4
J4	1-2	It connects the overflow signal of counter 4 to signal for counting up (increment) of counter 5
	2-3	It connects PHASE1 CNT5 to signal for counting up (increment) of counter 5
	3-4	It connects PHASE1 CNT5 to signal for measuring with direction discriminator of counter 5
J5	1-2	It connects the underflow signal of counter 4 to signal for counting down (decrement) of counter 5
	2-3	It connects PHASE2 CNT5 to signal for counting down (decrement of counter 5
	3-4	It connects PHASE2 CNT5 to signal for measuring with direction discriminator of counter 5
J6	1-2	It connects PHASE1 CNT6 to signal for counting up (increment) of counter 6
	2-3	It connects PHASE1 CNT6 to signal for measuring with direction discriminator of counter 6
J7	1-2	It connects PHASE2 CNT6 to signal for counting down (decremen of counter 6
	2-3	It connects PHASE2 CNT6 to signal for measuring with direction discriminator of counter 6

<u>-ab-ac-</u>	••®(bu/)	grifo [®]	
J8	1-2	It connects PHASE1 CNT1 to signal for of counter 1	pr counting up (increment)
	2-3	It connects PHASE1 CNT1 to signal for discriminator of counter 1	or measuring with direction
J9	1-2	It connects PHASE2 CNT1 to signal fo of counter 1	r counting down (decremer
	2-3	It connects PHASE2 CNT1 to signal for discriminator of counter 1	or measuring with direction
J10	1-2	It connects the overflow signal of coun up (increment) of counter 2	ter 1 to signal for counting
	2-3	It connects PHASE1 CNT2 to signal for of counter 2	or counting up (increment)
	3-4	It connects PHASE1 CNT2 to signal for discriminator of counter 2	or measuring with direction
J11	1-2	It connects the underflow signal of cou down (decrement) of counter 2	nter 4 to signal for countin
	2-3	It connects PHASE2 CNT2 to signal fo of counter 2	r counting down (decreme
	3-4	It connects PHASE2 CNT2 to signal for discriminator of counter 2	or measuring with direction
J12	1-2	It connects PHASE1 CNT3 to signal for of counter 3	or counting up (increment)
	2-3	It connects PHASE1 CNT3 to signal for discriminator of counter 3	or measuring with direction
J13	1-2	It connects PHASE2 CNT3 to signal fo of counter 3	r counting down (decreme
	2-3	It connects PHASE2 CNT3 to signal for discriminator of counter 3	or measuring with direction
J14	not connected	It doesn't connect the metallic shield of ground signal (GND)	CN1 to power supply
	connected	It connects the metallic shield of CN1 t signal (GND)	o power supply ground
J15	not connected connected	It configures PHASE2 CNT6 signal for It configures PHASE2 CNT6 signal for	
J16	not connected connected	It configures OPULSE CNT6 signal fo It configures OPULSE CNT6 signal fo	
J17	not connected connected	It configures PHASE1 CNT6 signal for It configures PHASE1 CNT6 signal for	1 110

ITALIAN TECHNOLOGY ______ grifo[®] _____

buı

J18	not connected connected	It configures PHASE2 CNT5 signal for +24 Vdc power supply It configures PHASE2 CNT5 signal for +12 Vdc power supply
J19	not connected connected	It configures OPULSE CNT5 signal for +24 Vdc power supply It configures OPULSE CNT5 signal for +12 Vdc power supply
J20	not connected connected	It configures PHASE1 CNT5 signal for +24 Vdc power supply It configures PHASE1 CNT5 signal for +12 Vdc power supply
J21	not connected connected	It configures PHASE2 CNT4 signal for +24 Vdc power supply It configures PHASE2 CNT4 signal for +12 Vdc power supply
J22	not connected connected	It configures OPULSE CNT4 signal for +24 Vdc power supply It configures OPULSE CNT4 signal for +12 Vdc power supply
J23	not connected connected	It configures PHASE1 CNT4 signal for +24 Vdc power supply It configures PHASE1 CNT4 signal for +12 Vdc power supply
J24	not connected connected	It configures PHASE2 CNT3 signal for +24 Vdc power supply It configures PHASE2 CNT3 signal for +12 Vdc power supply
J25	not connected connected	It configures OPULSE CNT3 signal for +24 Vdc power supply It configures OPULSE CNT3 signal for +12 Vdc power supply
J26	not connected connected	It configures PHASE1 CNT3 signal for +24 Vdc power supply It configures PHASE1 CNT3 signal for +12 Vdc power supply
J27	not connected connected	It configures PHASE2 CNT2 signal for +24 Vdc power supply It configures PHASE2 CNT2 signal for +12 Vdc power supply
J28	not connected connected	It configures OPULSE CNT2 signal for +24 Vdc power supply It configures OPULSE CNT2 signal for +12 Vdc power supply
J29	not connected connected	It configures PHASE1 CNT2 signal for +24 Vdc power supply It configures PHASE1 CNT2 signal for +12 Vdc power supply
J30	not connected connected	It configures PHASE2 CNT1 signal for +24 Vdc power supply It configures PHASE2 CNT1 signal for +12 Vdc power supply
J31	not connected connected	It configures OPULSE CNT1 signal for +24 Vdc power supply It configures OPULSE CNT1 signal for +12 Vdc power supply
J32	not connected connected	It configures PHASE1 CNT1 signal for +24 Vdc power supply It configures PHASE1 CNT1 signal for +12 Vdc power supply

FIGURE 3: JUMPERS FUNCTIONS TABLE

The jumper J1 must be connected in position 1-2 when the CPU card, that controls the **AAC 06**, is based on Z80 or compatible CPU, to avoid malfunction especially during the interrupts management performed by same CPU card.

- arifo® -

The connection of input signals to signals for measuring with direction discriminator allows a comfortable acquisition of bidirectional encoders, obtaining by the card an absolute combination that coincides with the current encoder position, without any intermediate calculations.

Instead the connection of input signals to signal for counting up (increment and/or down (decrement) allows the development of simple counters, frequency measurement, period measurement, up and down pulse counter, etc.

Finally the counters 1, 2 and 3, 4 can be cascade connected obtaining total 32 bits counters. For example if you want to use counter 1 and 2 in cascade, you must:

- connect the signal to measure to counter 1 inputs: PHASE1 CNT1, PHASE2 CNT1 and 0PULSE CNT1;
- connect the jumpers J8 and J9 in position 1-2 or 2-3 according with direction disriminator necessity;
- connect the jumpers J10 and J11 in position 1-2 obtaining that the overflow and underflow of counter 1 increase and decrease the counter 2;
- acquire the 4 counting registers and calculate the total 32 bits combination by using the couple of byte from counter 1 (these are the 16 less significant bits) and the couple from counter 2 (the 16 most significant bits).

If the jumper J14 is closed, the card power supply ground (GND on K1) is connected with metallic frame of CN1 connector obtaining an electric shielding on input signals. Please pay attention on this jumper connection in fact when the external connections is not performed with the proper noisy immunity techniques, it carries troubles on power supply of the entire system.

When the jumpers J15 \div J32 are connected it is possible to connect a +V Opto = +12 Vdc while if they are open the +V Opto is +24 Vdc. On CN1 connector there is only one +V Opto signal, so if you must contemporaneously acquire both +12 Vdc and +24 Vdc inputs please ensure separation of all the ground signals of the same input signals, in fact the positive signals must be linked together and then connected to pins 19 and 20 of CN1.

COUNTER FUNCTIONALITY CONFIGURATIONON

The card **AAC 06** is based on two THCT 12316 components that are triple programmable counter that can operate in 8 different modes. For detailed information about these modalities please refer to appendix A of the manual, while for the mode selection the user must configure three dip switches DIP2, DIP3, DIP4 as below described:

DIP 4.3 ON ON ON OFF OFF OFF OFF	DIP 4.2 ON ON OFF OFF ON ON OFF OFF	DIP 4.1 ON OFF ON OFF ON OFF ON OFF	-> -> -> -> -> -> ->	MODE Mode 0 for counter 1 Mode 1 for counter 1 Mode 2 for counter 1 Mode 3 for counter 1 Mode 4 for counter 1 Mode 5 for counter 1 Mode 6 for counter 1 Mode 7 for counter 1
DIP 4.6 ON ON ON OFF OFF OFF OFF	DIP 4.5 ON OFF OFF OFF ON ON OFF OFF	DIP 4.4 ON OFF ON OFF ON OFF ON OFF	-> -> -> -> -> -> ->	MODE Mode 0 for counter 2 Mode 1 for counter 2 Mode 2 for counter 2 Mode 3 for counter 2 Mode 4 for counter 2 Mode 5 for counter 2 Mode 6 for counter 2 Mode 7 for counter 2
DIP 3.2 ON ON ON OFF OFF OFF OFF	DIP 4.8 ON OFF OFF OFF ON ON OFF OFF	DIP 4.7 ON OFF ON OFF ON OFF ON OFF	-> -> -> -> -> -> ->	MODE Mode 0 for counter 3 Mode 1 for counter 3 Mode 2 for counter 3 Mode 3 for counter 3 Mode 4 for counter 3 Mode 5 for counter 3 Mode 6 for counter 3 Mode 7 for counter 3

-9696	;• ••••	bu / —		— grifo [®] —	
DIP 2.6	DIP 2.5	DIP 2.4		MODE	
ON	ON	ON	->	Mode 0 for counter 5	
ON	ON	OFF	->	Mode 1 for counter 5	
ON	OFF	ON	->	Mode 2 for counter 5	
ON	OFF	OFF	->	Mode 3 for counter 5	
OFF	ON	ON	->	Mode 4 for counter 5	
OFF	ON	OFF	->	Mode 5 for counter 5	
OFF	OFF	ON	->	Mode 6 for counter 5	
OFF	OFF	OFF	->	Mode 7 for counter 5	
DIP 3.1	DIP 2.8	DIP 2.7		MODE	
ON	ON	ON	->	Mode 0 for counter 6	
ON	ON	OFF	->	Mode 1 for counter 6	
ON	OFF	ON	->	Mode 2 for counter 6	
ON	OFF	OFF	->	Mode 3 for counter 6	
OFF	ON	ON	->	Mode 4 for counter 6	
OFF	ON	OFF	->	Mode 5 for counter 6	
OFF	OFF	ON	->	Mode 6 for counter 6	
OFF	OFF	OFF	->	Mode 7 for counter 6	

Below it is described a short description of the 8 function madalities, related to signals available on CN1 connector.

- Mode 0: COUNTER with increment or decrement (up or down) caused by PHASE1 CNTn and/or PHASE2 CNTn signals, without direction discriminator.
- Mode 1: DIRECTION DISCRIMINATOR of a single count pulse synchronous with PHASE1 CNTn rising in forward direction and falling in backward direction.
- Mode 2: DIRECTION DISCRIMINATOR of a single count pulse synchronous with PHASE2 CNTn rising in forward direction and falling in backward direction.
- Mode 3: DIRECTION DISCRIMINATOR of a double count pulse synchronous with PHASE1 CNTn rising and falling.
- Mode 4: DIRECTION DISCRIMINATOR of a double count pulse synchronous with PHASE2 CNTn rising and falling.
- Mode 5: DIRECTION DISCRIMINATOR of a quadruple count pulse synchronous with all edges.
- Mode 6: PULSE WIDHT MEASUREMENT where PHASE1 CNTn is the gate signal and PHASE2 CNTn is high for up counting and low for down counting. Count is synchronous with rising clock.
- Mode 7: FREQUENCY MEASUREMENT where PHASE1 CNTn is frequency signal to be measured and PHASE2 CNTn is the gate signals of know time interval. Count is synchronous with rising edge of PHASE1 CNT n.

VISUAL FEEDBACK

LEDs	COLOUR	FUNCTION
DL1	Red	Visualizes status of PHASE1 CNT1 line.
DL9	Green	Visualizes status of PHASE2 CNT1 line.
DL7	Yellow	Visualizes status of 0PULSE CNT1 line.
DL2	Red	Visualizes status of PHASE1 CNT2 line.
DL10	Green	Visualizes status of PHASE2 CNT2 line.
DL17	Yellow	Visualizes status of 0PULSE CNT2 line.
DL3	Red	Visualizes status of PHASE1 CNT3 line.
DL11	Green	Visualizes status of PHASE2 CNT3 line.
DL8	Yellow	Visualizes status of 0PULSE CNT3 line.
DL4	Red	Visualizes status of PHASE1 CNT4 line.
DL12	Green	Visualizes status of PHASE2 CNT4 line.
DL15	Yellow	Visualizes status of 0PULSE CNT4 line.
DL5	Red	Visualizes status of PHASE1 CNT5 line.
DL13	Green	Visualizes status of PHASE2 CNT5 line.
DL18	Yellow	Visualizes status of 0PULSE CNT5 line.
DL6	Red	Visualizes status of PHASE1 CNT6 line.
DL14	Green	Visualizes status of PHASE2 CNT6 line.
DL16	Yellow	Visualizes status of 0PULSE CNT6 line.

On the front side of **AAC 06** board, there are two rows of eight LEDs plus other two LEDs that visualize the input signals status conditions, as described in the following table:

grifo[®] -

-abaco

bus

FIGURE 4: VISUAL FEEDBACK TABLE

Each LED is enabled when the relative input signal is active that is when the pin on CN1 connector is connected to ground signal of insulated inputs power supply (= reference of +V Opto).

BOARD MAPPING

AAC 06 board is mapped into a 16 consecutive I/O bytes addressing space that can be based starting from different base addresses according to how the board is configured. This feature allows to use several AAC 06 cards on the same ABACO[®] BUS, or to install them on a BUS where other peripheral cards are installed obtaining a structure that can be expanded without any difficulty or modifications to the application software.

The base address can be defined through the specific BUS interface circuitry on the board itself; this circuitry uses one dip switch, featuring 4 pins, from which it reads the address set by the user. Here follows the corrispondance between dip switches configuration and address signals.

DIP1.1	->	Address BUS signal A4
DIP1.2	->	Address BUS signal A5
DIP1.3	->	Address BUS signal A6
DIP1.4	->	Address BUS signal A7

These dip switches are driven in complemented logic, this means that if a switch is **ON** it generates a **logic zero**, viceversa if a switch is **OFF** it generates a **logic one**.

Also jumper J1 affects the addressing section and must be set according to the type of master control board (**CPU** or **GPC®**) used to drive the **AAC 06**. In detail if the master control board is provided with signal /M1 on **ABACO® BUS** connector, then jumper J1 must be connected in position 1-2 and viceversa.

To facilitate the board use here follow two mapping examples:

If the user has to map the board starting from base address 040H, driven by a master control card provided with the signal /M1, jumper and dip swithces status must be as follows:

->	Position 1-2
->	ON
->	ON
->	OFF
->	ON
	-> -> ->

If the user has to map the board starting from base address F0H, driven by a master control card not provided with the signal /M1, jumper and dip swithces status must be as follows:

J1	->	Position 2-3
DIP1.1	->	OFF
DIP1.2	->	OFF
DIP1.3	->	OFF
DIP1.4	->	OFF

To easily locate the dip swithces, please refer card serigraph.

grifo[®] -

INTERNAL REGISTERS ADDRESSING

Indicating the board base address with **<baseaddr**>, that is the address set using DIP1, as indicated in the previous paragraph, **AAC 06** internal registers are addressable as explained in the following table.

DEVICE	REG.	ADDRESS	R/W	MEANING
	CNT3H	<baseaddr>+02H</baseaddr>	R/W	Read/Set High byte of counter 3
	CNT3L	<baseaddr>+03H</baseaddr>	R/W	Read/Set Low byte of counter 3
THCT 12316	CNT2H	<baseaddr>+04H</baseaddr>	R/W	Read/Set High byte of counter 2
IC8	CNT2L	<baseaddr>+05H</baseaddr>	R/W	Read/Set Low byte of counter 2
	CNT1H	<baseaddr>+06H</baseaddr>	R/W	Read/Set High byte of counter 1
	CNT1L	<baseaddr>+07H</baseaddr>	R/W	Read/Set Low byte of counter 1
	CNT6H	<baseaddr>+0AH</baseaddr>	R/W	Read/Set High byte of counter 6
	CNT6L	<baseaddr>+0BH</baseaddr>	R/W	Read/Set Low byte of counter 6
THCT 12316	CNT5H	<baseaddr>+0CH</baseaddr>	R/W	Read/Set High byte of counter 5
IC7	CNT5L	<baseaddr>+0DH</baseaddr>	R/W	Read/Set Low byte of counter 5
	CNT4H	<baseaddr>+0EH</baseaddr>	R/W	Read/Set High byte of counter 4
	CNT4L	<baseaddr>+0FH</baseaddr>	R/W	Read/Set Low byte of counter 4

FIGURE 5: INTERNAL REGISTERS ADDRESSES TABLE

If using several boards on the same **ABACO[®] BUS**, when setting the boards mapping address the user shold be careful not to allocate more than one board in the same addressing space (consider the base address plus the bytes taken by the board addressing). If this condition is not satisfied a BUS conflict situation will occour, prejudicing the correct working of the whole system.

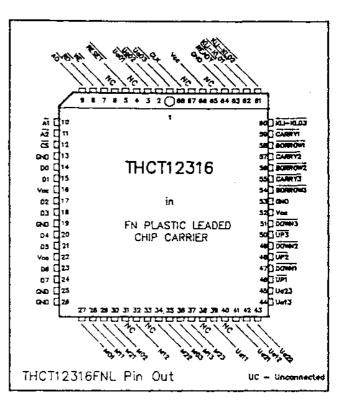
TRIPLE COUNTER THCT 12316 AND COMPATIBLE

For the desctription of this triple counter please refer to the specific technical documentation in the appendix A of this manual and to description available in COUNTER FUNCTIONALITY CONFIGURATION. The information reported in appendix use different names for the input signals with the following corrispondence:

Ualn	->	PHASE1 CNTn
Ua2n	->	PHASE2 CNTn
Ua0n	->	0PULSE CNTn

The three counters of this device can be managed through read and write operations to the allocation addresses of registers CNTnH and CNTnL, referring respectively to High and Low bytes of the n-th counter, where n can be in the range 1÷6.

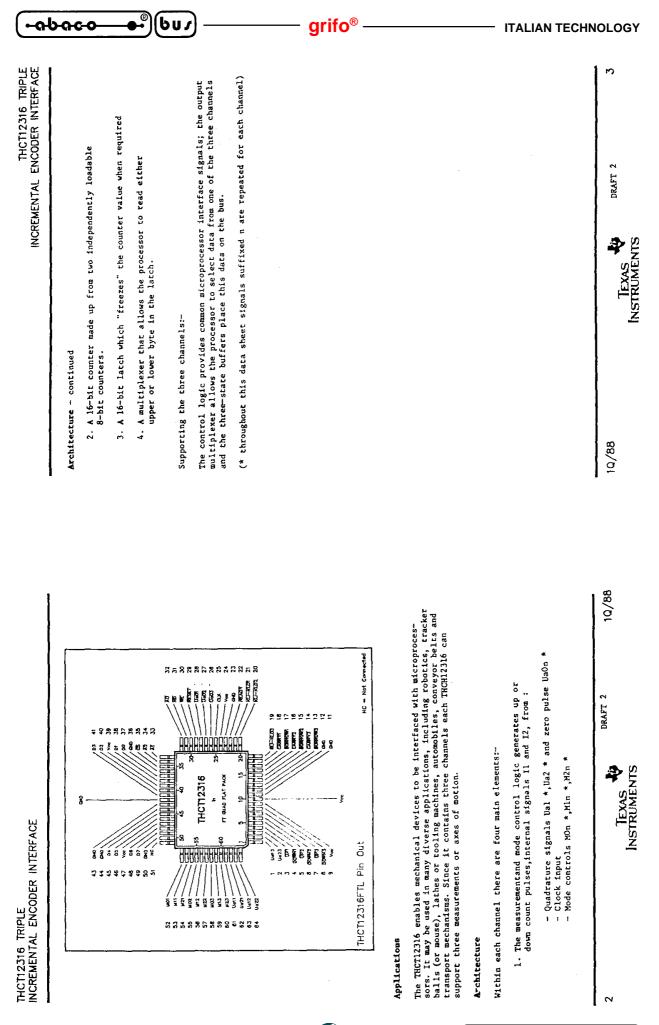
— grifo® ·



APPENDIX A: COMPONENTS DESCRIPTION

Smart Part™

THCT12316 TRIPLE INCREMENTAL ENCODER INTERFACE


- Three independent channels in one compact surface mount device
- * Each channel compatible with the popular THCT2000
- * Interfaces three mechanisms/ axes to data bus
- Direction discriminators identify & measure forward/ backward rotation/direction
- * Separate zero pulse input
- Pulse width measurement
- * Frequency measurement
- * Cascadable 16-bit counters
- * TTL compatible
- * 8-bit parallel 3-state bus
- * Simple write/read procedure
- Choice of chip carrier or flat package

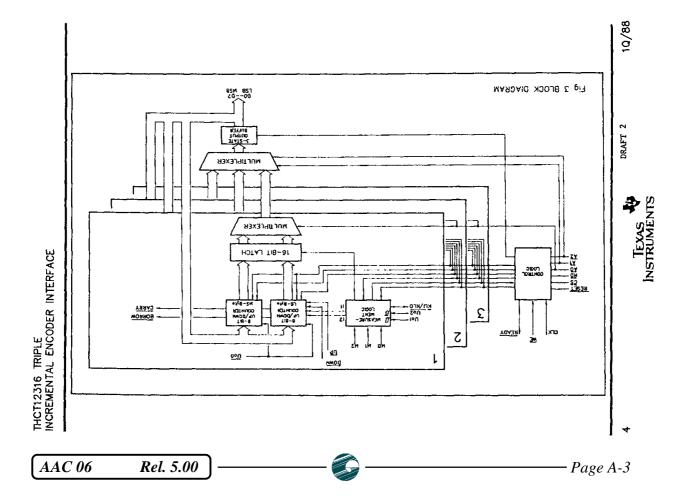
* Advanced 1.8um CMOS technology

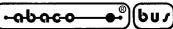
Description

The THCT12316 INCREMENTAL ENCODER INTERFACE consists of three channels each, of which can independently determine the direction and displacement of a mechanical device or axis based on two input signals from transducers in quadrature. Alternatively, each channel can measure a pulse width using a known clock rate, or a frequency, by counting input pulses over a known time interval. It includes three 16-bit counters which may also be used separately. The THCT12316 may be cascaded between channels on one device or between devices to provide accuracy greater than 16-bits, and is designed for use in many types of microprocessor-based systems.

Page A-2

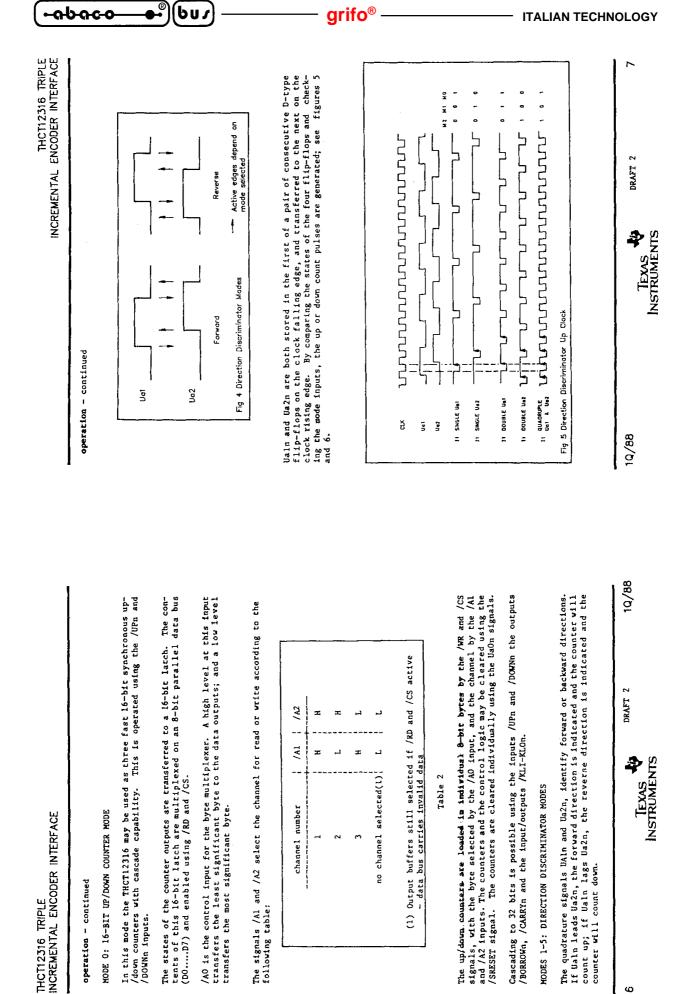
AAC 06


Rel. 5.00


Operation

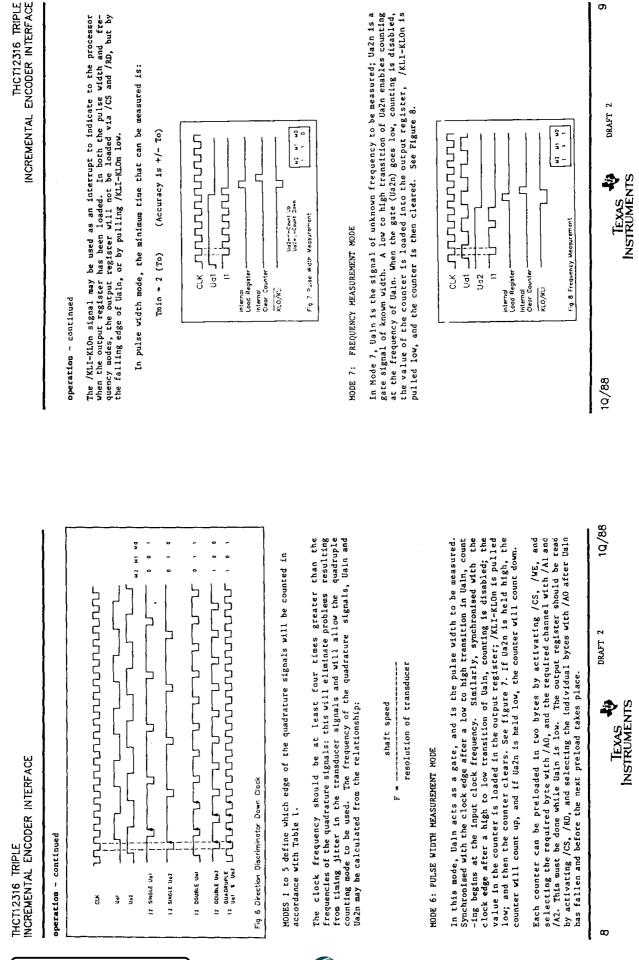
				COUNTER
0	0	0	0	l6-bit up/down counter (inhibits direction discriminator).
 			+	DIRECTION DISCRIMINATOR
	0	0		Single count pulse synchronous with Ualn rising in forward direction and Ualn falling in backward direction.
~~~~~	0		0	Single count pulse synchronous with Ua2n rising in forward direction and Ua2n falling in backward direction.
~~~~ <b>~</b>	0	~	H	Double count pulse synchronous.with Ualn rising and falling.
	~	0	0	Double count pulse synchronous with Ua2n rising and falling.
بى بى	+-4 	0		Quadruple count puise synchronous with all edges.
			† 	PULSE WIDTH MEASUREMENT
чо чо	~1		0	Uain is the gate signal Uain is high for up counting and low for down counting. Count is synchronous with rising clock.
				FREQUENCY MEASUREMENT
~	~			Ualn is frequency signal to be measured Ua2n is the gate signal of known time interval. Count is synchronous with rising edge of Ualn

ITALIAN TECHNOLOGY -



₁₀

DRAFT 2


Texas Instruments

10/88

AAC 06

Rel. 5.00

AAC 06

Rel. 5.00

Page A-5

₽®

bus

σ

-abaco

THCT12316 TRIPLE INCREMENTAL ENCODER INTERFACE	THCT12316 TRIPLE INCREMENTAL ENCODER INTERFACE
operation - continued	WRITE OPERATION - continued
RESET OPERATION A total reset is initiated by pulling the /RESET pin low. This will clear the counters to zero, reset the D flip-flops at the inputs of the quadrature signals (Ualm and Ua2m), clear the latches that inhibit the load register	low, and will stay low until /CS and/or /RD go high. The load output register pulse stores the current value of the counter in a 16-bit latch register and /AO directs the selected byte through a multiplexer to the outputs : /CS and /RD also enable the $3-ste$ outputs - see Figure 13. The outputs : /CS and PD loaded immediatel: $12.12/N(11-010)$ is pulled low externally, this signal normally comes from a cascaded device.
putse, and load zero into the output register. The should be held to the errors $(+/-1)$ after a reset, the Uain and Ua2n imputs should be held to the values indicated in Table 2 during and just after the reset pulse.	For Modes 6 & 7 see the earlier descripion of these modes.
	Configuration
MODE Valn Va2n 0 X X 1-5 H Y	Special consideration should be paid to the automatic configuration features of the THCT12316. The purpose of these features is to allow for the different order of byte reads (high then low or low then high) of different processors when doing a word read across a byte wide bus and also to configure cascaded devices automatically for correct word read sequence -see below.
 ;	Byte order configuration-
-	After a system reset has occured, the first read operation will store the
Table 3	value of /AO in a latch within the device. From that time until the next system reset the load output register pulse during a read operation will only to constant of /AO is the constant value. This means that the internal load
CASCADING DEVICES	be generated if /AU is finds stored wature, finds meaning the provident of the particular processor. Special care should be taken if the byte of the particular processor. Special care should be taken if
	reading individual bytes to ensure these operations are always done in a con-
The /KLT-KLOn pins of all cascaded THUTL/16's should be thed together, so that all of the devices load their output registers at the same time. When the 'master' generates a pulse for the other THCTL216's, /KLT-KLON on the	sistent order. Cascaded configuration-
as an output, and /ALLALON ON LIE STATES work as Job of one device should be tied to the /UP input of the rie. Similarly, /BORROW should be connected to /DOWN.	After a system reset the first device and channel to receive a read operation configures itself into "Master" mode and outputs a pulse on /KLI-KLO. In
Application. READ OPERATION	cascaded operation the /KLI-KLO pins of the cascaded channels are connected together and the input pulse on /KLI-KLO of the cascaded channels configures these to "Slave" mode. On all subsequent read operations the load output res-
A number may be preloaded into the counter by pulling /CS and /WE low while using /AO to direct the value on the data bus to the selected byte of the	tster pulse is only generated by the "Master" channel (for the appropriate polarity of /A0, as noted above) and this is fed to the "Slave" devices via
counter and /A1 & /A2 to select the required channel. This will cause /READY to go low on the next falling clock edge, and remain low until /CS and /WE go	the /ku/-ku/ connection.
high. See Figure 12.	Special care should be taken when cascading devices of channels to atrays toom in the same channel order, as well as the byte order already mentioned. To
WRITE OPERATION	freeze all three channels with a single read cycle (in cascaded or non- cascaded mode) the /KLI-KLO pins of all channels are connected with a pull-up
When in MODES 0 to 5 the contents of the counter can be read at any time by pulling /CS and /RD low. The channel is selected by using /AI $\&$ /A2. Within	resistor to Vcc (see Systems Application). This ensures that only one channel is operating as the "Master" and all others are "Slaves".
this channel the most significant byte may be selected be setting /AO to low, and the least significant byte may be read be setting /AO high. This will cause a load output register pulse to be generated and /KLI-KLON will go low during the next low clock pulse. /READY will also go low as the clock goes	If an external "freeze" of the positioning system is required, and external /KLI-KLO pulse will program all channels as slaves. This in derived by gener- ating an external /KLI-KLO pulse before the first read cycle appears after system reset (See Design Checklist).
10 TEXAS V BRAFT 2 1Q/88 INSTRUMENTS	10/88 TEXAS V DRAFT 2 11 INSTRUMENTS

AAC 06

Rel. 5.00

••)(bu*s*) -

-abaco

THCT1 INCREI

AAC 06

Rel. 5.00

	INTERFACE
12316 TRIPLE	EMENTAL ENCODER

• •		Number	0/1	Description
+·	PLCC	64 QFP	+	
/cs	12	35	Input	Chip Select. A low enables the device.
63/	<i>∞</i>	31	Input	Read. When this and /CS are active(low), the data from the output register will be present on the data bus.
g · · · ·	14 15 18 18 20	33 45 45 45	Input/ Output	LSB Usta Bus Buffer: 8-Bit Bi-directional Duffer with 3-state outputs connected to the microprocessor system.
	5, 23 21	4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		MSB
BORROW1 BORROW2 BORROW3	5,5 8	223	Output	Counter underflow signal
/CARRY1 /CARRY2 /CARRY3	54	18 16 14	Output	Counter overflow signal
/KLI-KL02 /KLI-KL02 /KLI-KL03	62 61 60	21 20 19	Input/ Output	Cascade load input/cascade load output. Open drain output with internal 95uA(nom) pull-up. External pull-up required for full speed operation.
/ READY	63	22	Output	When low signal indicates to the MPU that read or write may be completed. /READY falling edge synchronous with CLK Open drain output needs external pull-up.
M11 M01	29 28 27	52 53 54	Input	Mode select inputs (see Table 1)
M22 M12 M02	34 32 32	55 55 55	: : :	
M23 M13 M03	36 36	9 6 8 9 8	; ; ; ;	

Texas Instruments

(bu*s*

THCT12316 TRIPLE INCREMENTAL ENCODER INTERFACE Description
--

68 64 1 Input Measuring input signals 13 42 63 (Schmitt characteristics) 13 61 (Schmitt characteristics) 13 64 1 Input Measuring input signals 45 5 (Schmitt characteristics) 13 64 23 28 Input Zero pulse. When active (I 23 28 Input Clock. Used for internal 24 25 Input Clock. Used for internal 26 27 Input Byte select. A high level 9 32 Input Clock. Used for internal 9 32 Input Clock. Used for internal 9 32 Input Clock. Used for internal 9 32 Input Byte select. A high level 10 33 Input Byte select. A high level 11 34 Input Byte select. In the aptropropriate 11 34 Input Byte select. A high level 11 34 Input Byte select. A high level 11 34 Input Byte select. In the counter is cleared 11	68 64 1 Input Measuring input signals 39 61 " (Schmitt characteristics) 39 61 " (Schmitt characteristics) 43 64 " (Schmitt characteristics) 43 64 " " 43 64 " " 43 64 " " 5 2 Input Zero pulse. When active (low), counter in the appropriate chanter 28 Input Cleared. Other logic is not aff 68 25 Input Clock. Used for internal 68 25 Input Clock. Used for internal 9 32 Input Clock. Used for internal 10 33 Input Clock. Used for internal 11 34 Input Channel select. See Table 2. 11 34 Input Channel select. See Table	Pin Name	Pin	Number	0/1	Description
44 1 Input Measuring input signals 39 61 " (Schmitt characteristics) 45 2 " (Schmitt characteristics) 43 64 " 1 41 62 " Schmitt characteristics) 23 64 " " 24 27 counter in the appropriate (i counter) 10 27 28 Input Clock. Used for internal 28 25 Input Clock. Used for internal 9 32 Input Sphelronisation and control 9 32 Input Byte select. A high level 9 32 Input Selects the most significa 10 33 Input Channel select. See Table 11 34 Input Byte select. When active counting 7 30 Input Byte counter is cleared 7 30 Input Byte counter is cleared 7 30 Input Byte counter is cleared 7 30 Input Byte counter is cleared <th>44 1 Input Measuring input signals 39 61 " (Schmitt characteristics) 45 2 " (Schmitt characteristics) 41 63 2 Input Zero pulse. When active (low), 27 1 27 counter in the appropriate chan 2 2 Input Zero pulse. When active (low), 2 2 Input Clock. Used for internal 2 2 Input Clock. Used for internal 9 32 Input Clock. Used for internal 10 33 Input Channel select. Men active (low) 11 34 Input Channel select. See Table 2. 11 34 Input Channel select. See Table 3. 10 <t< th=""><th></th><th>PLCC</th><th>0FP</th><th></th><th></th></t<></th>	44 1 Input Measuring input signals 39 61 " (Schmitt characteristics) 45 2 " (Schmitt characteristics) 41 63 2 Input Zero pulse. When active (low), 27 1 27 counter in the appropriate chan 2 2 Input Zero pulse. When active (low), 2 2 Input Clock. Used for internal 2 2 Input Clock. Used for internal 9 32 Input Clock. Used for internal 10 33 Input Channel select. Men active (low) 11 34 Input Channel select. See Table 2. 11 34 Input Channel select. See Table 3. 10 <t< th=""><th></th><th>PLCC</th><th>0FP</th><th></th><th></th></t<>		PLCC	0FP		
45 2 " 43 64 " 41 62 " 3 28 Input Zero pulse. When active (l 2 27 cleared. Other logic is uo 68 25 Input Clock. Used for internal 9 32 Input Byte select. A high level 9 32 Input Byte select. A high level 11 34 Input Byte select. See Table 11 34 Input Channel select. See Table 11 34 Input Selects the most significa 11 34 Input Control logic is reset to 11 34 Input Selects the dubt. How Alte counter is cleared 11 34 Input Control logic is reset to 11 34 Input Cascade input for counting 29 49 50	45 2 * 43 64 * 41 62 * 2 27 Counter in the appropriate chan 1 26 27 clared. Other logic is not aff 68 25 Input Clared. Other logic is not aff 68 25 Input Clock. Used for internal 9 32 Input Clock. Used for internal 10 33 Input Channel select. A high level select 11 34 Input Channel select. See Table 2. 11 34 Input Channel select. See Table 2. 11 34 Input Channel select. See Table 2. 11 34 Input Channel select. See Table 3. 7 30 Input	Val3 Val2 Val1	44 42 39	69 19	Input:	Measuring input signals (Schmitt characteristics)
3 28 Input Zero pulse. When active (1 2 27 counter in the appropriate counter in the appropriate counter in the appropriate synchronisation and control 68 25 Input Clock. Used for internal 9 32 Input Byte select. A high level 9 32 Input Byte select. A high level 10 33 Input Device reset. When active control 11 34 Input Channel select. See Table 11 34 100 103 104 11 47 6 100 100	328InputZero pulse. When active (low),227cleared. Other logic is not aff6825Inputcleared. Other logic is not aff932InputByte select. A high level select932InputByte select. A high level select932InputByte select. A high level select932InputByte select. A high level select1033InputInput1134InputChannel select. See Table 2.1134InputChannel select. See Table 2.1134InputChannel select. Men active (low529InputChannel select. See Table 2.1134InputChannel select. See Table 2.1134InputChannel select. Men active (low529InputCantrol logic is reset to a kno11474Nutte enable. When active (low2496Input3518Input3518Input249513507Power supply volrage 5y +/- lox50710.44,50!Cround.50710.12,23,30!Cround.507144,50!Cround.505011,112,23,30!Cround.5051,11,12,23,30!Cround.	Ua23 Ua22 Ua21	4 4 4 4 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7	64 5 65 64 5	1 2 4	
68 25 Input Clock. Used for internal synchronisation and control synchronisation and control 9 32 Input Byte select. A high level 10 33 Input Byte select. A high level 11 34 Input Channel select. See Table 1 47 6 Input Control logic is reset to and the counter is cleared 1 47 6 Input Cascade input for counting 2 49 8 Input Cascade input for counting 3 50 7 Noter supply voltage 5V +// 51,19,25,111,12,23,30 Cround Cround Stond	6825InputClock. Used for internal synchronisation and control that synchronisation and control that byte select. A high level selec least significant by selects the most significant by least significant by selects the most significant by least significant by selects the most significant by least significant by least significant by least significant by selects the most significant by selects the most significant by least significant by selects the most significant by selects the most significant by selects the most significant by bevice reset. When active (low and /G and the counter is cleared.730InputChannel select. See Table 2.731InputChannel select. See Table 2.733InputChannel select. See Table 2.730InputChannel select. See Table 2.730InputChannel select. See Table 2.730InputChannel select. See Table 2.730InputChannel select. See Table 3.730InputChannel select. See Table 3.730InputChannel select. See Table 3.8496InputCounting down3518InputCascade input for counting up.5079Power supply voltage 5y +/- 10%515,66473Ground.53,6444,50Ground.	/Ua01 /Ua02 /Ua03	m 01	28 26	lnput	pulse. er in t ed. Oth
9 32 Input Byte select. A Migh level 10 33 Input least signifucant byte. A selects the most signification 11 34 Input Channel select. See Table 5 29 Input Device reset. When active control logic is reset to and the counter is cleared by is loaded into the cunter sective (low), the data tha bus is loaded into the cunting bus is loaded into the cunting bus is loaded into the counting bus is loaded input for counting bus is load bus is loaded input for counting bus is lo	932InputByte select: A high level select1033Inputleast significant byte. A low selects the most significant by1134InputChannel select. See Table 2.1134InputChannel select. See Table 2.529InputDevice reset. When active (low control logic is reset to a kno and the counter is cleared.730InputWrite enable. When /WE and /GS bus is loaded into the counter red by IAO,IAI and IA3.147446351848550752,6624,39,53,6444,5053,6444,5053,6411,12,23,3653,6411,12,23,3653,6421,11,12,23,3653,6421,11,12,23,3653,6411,12,23,3653,6411,12,23,3653,6411,12,23,3653,6412,43,44,5053,6412,43,44,5053,6412,43,44,5053,6412,43,44,5053,6412,43,44,5053,6412,43,44,5053,6411,12,23,3653,6412,43,44,5053,6412,43,44,5053,6412,43,44,5053,6414,4,5053,6412,11,12,23,3653,6412,11,12,23,3653,6414,4,5053,6412,11,12,23,3653,6414,4,5053,6414,45,605454,44,5055,6112,11,12,1	CLK	80	25	Input	Clock. Used for internal synchronisation and control timing.
10 33 Input Channel select. See Table 2. 11 34 Input Device reset. When active (5 29 Input Device reset. When active (7 30 Input Write enable. When Active (7 30 Input Write enable. When /WE and active (low), the data that bus is loaded into the counting active (low), the data that bus is loaded into the counting 4 1 47 4 Input 3 51 8 Input 46 3 Input Cascade input for counting 4 50 7 9 Cascade input for counting 4 51 8 Input Cascade input for counting 4 52,66 24,39 Fower supply voltage 5V +/- 51 11,12,23,30 Cround	1033InputChannel select. See Table 2.1134InputDevice reset. When active (low control logic is reset to a kno and the counter is cleared.730InputWrite enable. When /WE and /GS active (low), the data that is bus is loaded into the counter red by IAO, IAI and IA3.1 47 424963InputCascade input for counting down2463350750752,66 $24,39,10$ 53,64 $44,50,13,30,13,13,33,30,13,13,13,23,30,13,13,13,23,30,13,13,13,23,30,13,13,13,23,30,13,13,13,23,30,13,13,13,13,13,13,13,13,13,13,13,13,13,$	/A0	<i>с</i> ь	32	Input	select. A hi signifucant its the most
5 29 Input Device reset. When active (7 30 Input vaid the counter is cleared. 7 30 Input Write enable. When /WE and active (low), the data that active (low), the data that bus is loaded into the counting to the counting tot the counting to the counting to the counting to the	529InputDevice reset. When active (low control logic is reset to a kno and the counter is cleared.730InputWrite enable. When /WE and /GS active (low), the data that is bus is loaded into the counter read by IAO,IAI and IA3.1474Device (low), the data that is bus is loaded into the counter read by IAO,IAI and IA3.1474Input2496Input3518Input463InputCascade input for counting dow5077Power supply voltage 5V +/- 10X53,64[47, 43, 36]Ground.	/A1 /A2	91	84	Input Input	select. See Table
7 30 Input Write enable. When /WE and active (low), the data that bus is loaded into the count bus is loaded into the count bus is loaded into the count of a science input for counting a science is a science input input	730InputWrite enable. When /WE and /CS active (low), the data that is bus is loaded into the counter bus is loaded into the counter 47 474474 $-eel$ by 1A0,1A1 and 1A3.496InputCascade input for counting dow496 1 nputCascade input for counting dow463 1 nputCascade input for counting up.507 1 nputCascade input for counting up.507 1 nputCascade input for counting up.52,66 $24,39$, $10,44,50$ Power supply voltage 5V +/- 10X53,64 $42,43,44,50$ Ground.	RESET	5	29	Input	the counter is cleared.
47 4 49 6 11 8 12 8 13 10, 22, 19, 10, 11, 12, 23, 30, 15, 25, 11, 11, 12, 23, 30, 15, 25, 11, 11, 23, 30, 15, 25, 11, 11, 23, 30, 15, 25, 11, 11, 23, 30, 15, 25, 11, 11, 23, 30, 15, 25, 11, 11, 23, 30, 15, 25, 11, 11, 12, 23, 30, 15, 25, 11, 11, 12, 23, 30, 15, 25, 11, 11, 12, 23, 30, 15, 25, 11, 11, 12, 23, 30, 15, 25, 11, 11, 12, 23, 30, 15, 25, 11, 11, 12, 23, 30, 15, 25, 11, 11, 12, 23, 30, 15, 25, 11, 11, 12, 23, 30, 15, 25, 11, 11, 12, 23, 30, 15, 25, 11, 11, 12, 23, 30, 15, 25, 11, 11, 12, 23, 30, 15, 25, 26, 20, 12, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	47 4 49 6 51 8 46 3 46 3 50 7 50 7 51,66 24,39, 52,66 24,39, 53,64 44,50 7 Power supply voltage 5V +/- 53,64 44,50 55,64 44,50	/#E		ê	Input	ie enable. When /WE and ve (low), the data that is loaded into the count by IAO, IAI and IA3.
1 46 3 Input Cascade input for counting value 3 50 7 Input Cascade input for counting value 16,22,9,10, 7 Power supply voltage 5V +/- 52,66 24,39, Power supply voltage 5V +/- 13,19,25,111,12,23,36 Cound	1 46 3 Input Cascade input for counting v 2 48 5 1 Input Cascade input for counting v 3 50 7 1 Power supply voltage 5V +/- 16,22,9,10, 7 Power supply voltage 5V +/- 52,66 47,39, Power supply voltage 5V +/- 53,64 42,43,44,50 Cround.	/DOWN1 /DOWN2 /DOWN3	47 49 51	- 1 - 0 - 60	Input	for counting
16,22, 9,10, 52,66 (24,39), 13,19,25,11,12,23,36 13,19,25,11,12,23,36 13,10,25,11,12,23,36	16,22, 9,10, 52,66 [24,39,] Power supply voltage 5V +/- 51,64 [47,39,36] Fower supply voltage 5V +/- 53,64 [42,43,44,50] Cround.	/UP1 /UP2 /UP3	46 50 50	6 V V	Input	for counting
[13,19,25,111,12,23,36]	[13, 19, 25, [11, 12, 23, 36] [53, 64 [42, 43, 44, 50]	Vcc	16,22, 52,66	114		supply voltage 5V +/-
		152	2	+	23,36	Ground.

ITALIAN TECHNOLOGY -

-abaco

